LOS OSOS GROUNDWATER BASIN, BASIN MANAGEMENT COMMITTEE

NOTICE OF MEETING

NOTICE IS HEREBY GIVEN that the Los Osos Groundwater Basin, Basin Management Committee Board of Directors will hold a **Board Meeting** at **1:30 P.M.** on **Wednesday, May 25, 2016** at the South Bay Community Center, 2180 Palisades Ave, Los Osos, CA, 93402.

<u>Directors</u>: Agenda items are numbered for identification purposes only and may not necessarily be considered in numerical order.

NOTE: The Basin Management Committee reserves the right to limit each speaker to three (3) minutes per subject or topic. In compliance with the Americans with Disabilities Act, all possible accommodations will be made for individuals with disabilities so they may attend and participate in meetings.

BASIN MANAGEMENT COMMITTEE BOARD OF DIRECTORS AGENDA

- 1. CALL TO ORDER
- 2. PLEDGE OF ALLEGIANCE
- 3. ROLL CALL
- **4. BOARD MEMBER COMMENTS.** Board members may make brief comments, provide project status updates, or communicate with other directors, staff, or the public regarding non-agenda topics.
- 5. CONSENT AGENDA

The following routine items listed below are scheduled for consideration as a group. Each item is recommended for approval unless noted and may be approved in their entirety by one motion. Any member of the public who wishes to comment on any Consent Agenda item may do so at this time. Consent items generally require no discussion. However, any Director may request that any item be withdrawn from the Consent Agenda and moved to the "Action Items" portion of the Agenda to permit discussion or to change the recommended course of action. The Board may approve the remainder of the Consent Agenda on one motion.

- a. Approval of Minutes from April 20, 2016 Meeting.
- b. Approval of Budget Update and Invoice Register through April, 2016.
- 6. EXECUTIVE DIRECTOR'S REPORT
- 7. ACTION ITEMS
 - a. Receive Draft 2015 Annual Report

Recommendation: Receive presentation and provide input to staff in preparation for the June 15, 2016 BMC meeting

b. Consider Video Recording of BMC Meetings

Recommendation: Provide direction to staff on the desired scope for video recording of the meetings

8. PUBLIC COMMENTS ON ITEMS NOT APPEARING ON THE AGENDA

The Basin Management Committee will consider public comments on items not appearing on the agenda and within the subject matter jurisdiction of the Basin Management Committee. The Basin Management Committee cannot enter into a detailed discussion or take any action on any items presented during public comments at this time. Such items may only be referred to the Executive Director or other staff for administrative action or scheduled on a subsequent agenda for discussion. Persons wishing to speak on specific agenda items should do so at the time specified for those items. The presiding Chair shall limit public comments to three minutes.

9. ADJOURNMENT

BASIN MANAGEMENT COMMITTEE BOARD OF DIRECTORS

Item 5a - Minutes of the Meeting of April 20th, 2016

Agenda Item	Discussion or Action
CALL TO ORDER 2. PLEDGE OF ALLIGANCE	Marshall Ochylski serving as chair called the meeting to order at 1:31pm and led the pledge of Allegiance.
3. ROLL CALL	Rob Miller, acting Clerk, called roll to begin the meeting. Director Gibson, Director Ochylski, Director Garfinkel, and Director Zimmer were present.
4. BOARD MEMBERS COMMENTS	Director Gibson stated that the ribbon cutting of the wastewater facility will be Friday April 22 nd at 11am.
5. CONSENT AGENDA	Rob Miller provided a brief explanation of the financial summary
	Public Comment
	No comments were made.
	A motion was made by Director Gibson to approve the consent items. Seconded by director Zimmer and carried with the following vote:
	Ayes: Directors Zimmer, Gibson, Ochylski and Garfinkel Nays: None Abstain: None Absent: None
6. EXECUTIVE DIRECTOR'S REPORT	Rob Miller, interim Executive Director, provided a brief verbal summary of the Executive Director's report. Questions from the Board
	Director Zimmer asked about the Zone of Benefit Analysis and asked for a timeline in completing this task.
	Mr. Miller responded the analysis would provide a feasibility level of investigation and indicated that updates would be provided periodically.
	Director Garfinkel asked about the conference call that occurred with legal staff concerning a JPA.
	Jena Acos (BHFS/GSWC legal staff) provided a brief update, and indicative that further updates would be provided as more information becomes available.

Public Comment

No comments were made

A motion was made by director Gibson to receive and file the Executive Director's report. Seconded by director Garfinkel and carried with the following vote:

Ayes: Directors Zimmer, Gibson, Ochylski and Garfinkel

Nays: None Abstain: None Absent: None

7. ACTION ITEMS

7a. Approve Scope and Fee for Grant Services

Mr. Miller provided a brief summary of the staff report.

Questions from Board:

Director Ochylski asked for an update and schedule at the May BMC meeting.

Public Comment:

No comments were made

A motion was made by director Garfinkel to approve the staff recommendation. Seconded by director Zimmer and carried with the following vote:

Ayes: Directors Zimmer, Gibson, Ochylski and Garfinkel

Nays: None Abstain: None Absent: None

7b. Consider Draft Water Conservation Program

Rob Miller provided a PowerPoint presentation on this action item (copy attached)

Director Garfinkel pointed out that S&T water company has an active rebate program for hot water recirculators.

Director Zimmer stated we should look at the programs that would be the most beneficial in the near term. He asked where these rebates amounts came from and if they would provide adequate incentive.

Director Garfinkel indicated his support for septic tank repurposing.

Public Comment:

Carolyn Atkinson expressed concern regarding the conservation programs that were listed in the presentation. She expressed how she thought that the BMC was supposed to look at alternatives to bring in more water to the basin. She

stated that the cost of water will go up with additional conservation.

Lou Tornatzky indicated his expectation that various viewpoints would always exist, but that a conservation program should be created with a long term view.

Keith Wimer expressed his gratitude for making conservation a priority. He recommended taking immediate advantage of the connections to the Los Osos wastewater project, and asked for an effective plan by the next meeting. A strong outreach program is needed immediately. He suggested that 70% of home owners should be willing to repurpose septic tanks. He also suggested increased rebates if initial rebates are not providing adequate incentive.

Karen Venditti said that there are plenty of people in the community that would be willing to help the committee. She emphasized the importance of conservation, and mentioned that desalination is a very expensive process with environmental impacts. She recommended that the community plan to stay within existing basin resources.

Lynette Tornatzky expressed concern over two trees on her property that receive septic discharge, with a specific concern regarding disinfection chemicals. Expressed the need to educate contractors to maximize septic tank repurposing.

Chuck Ceseña stated that conservation should be emphasized as the most cost effective water supply enhancement. He also mentioned a pending CSD committee meeting (Monday, 4-25-16) to discuss rate increases as rainfall did not materialize as it was predicted.

Teresa Sawyer said she received 12 bids for her sewer hookup that range from \$1,250 to \$10,000. Contractors are telling people that they will only do the job if they fill the tank with sand or slurry. She wants to get the message out that it is more cost effective to retain and clean the septic tank.

Linde Owen said the community can fill septic tanks with upper aquifer water. Expressed that the County's \$2.4 million could help put fill stations in, set up a truck delivery system, and put water meters on private wells.

Richard Margetson suggested a careful review of slide number 1. He stated that the groundwater production by purveyors should have spiked down further at the end of the graph. Richard again raised the need to televise the meetings to the Los Osos community.

Response from BMC

Director Ochylski explained that he supports the need to get the community educated on the programs discussed, and expressed his support to efficiently use basin resources to avoid importing water.

Director Ochylski left the meeting and passed the chairperson's responsibility to Director Zimmer. BMC alternative Chuck Ceseña joined the Committee as the LOCSD representative.

Mr. Miller spoke of physical infrastructure programs that are included in the Basin Plan and how they are still being pursued. Mr. Miller also talked about how hot water recirculation pumps work.

Director Gibson said he looks forward to working with the purveyors on conservation in attempt to generate strong community support. He said the community needs to get the right contactors to do sewer connection work. These contractors need to be educated on septic tank repurposing

Director Garfinkel recommended that the committee reconsider video recordings of meetings, with the intent of quickly providing information on conservation.

Director Cese<u>n</u> a said people who watch the meetings over television can have information to better work with contactors.

Mr. Miller indicated his intent to provide a community-wide flyer regarding potential rebates prior to the next meeting.

Director Garfinkel made a motion to direct staff to develop specific financial and public information details for adoption at the next meeting. Seconded by Director Ceseña and carried with the following vote:

Ayes: Directors Zimmer, Gibson, Ceseña and Garfinkel

Nays: None Abstain: None Absent: None

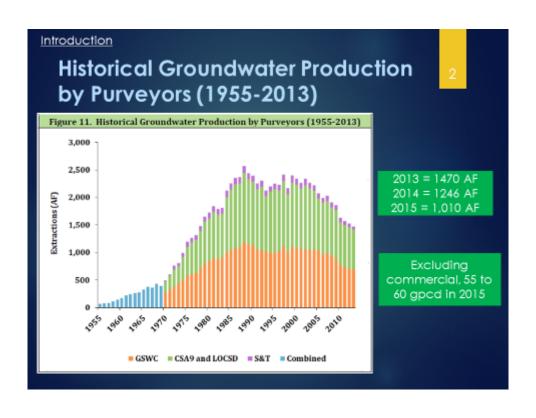
Director Gibson had to leave at this point and had no alternate.

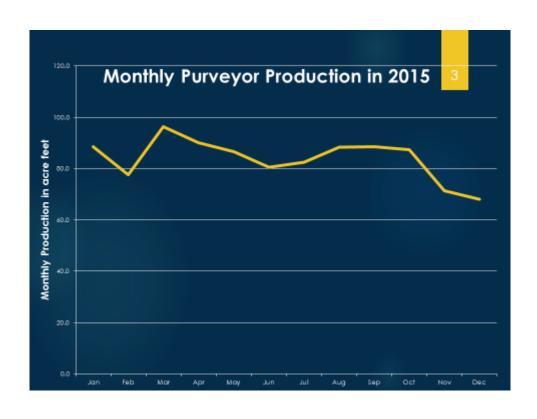
8. PUBLIC COMMENTS ON ITEMS NOT APPEARING ON THE AGENDA

Linde Owen explained how DVD's can be rented out at the local library. Burning these meetings to DVD's would allow the public to rent these discs out at the library. She emphasized the need to use the 5 million dollars for conservation.

Keith Wimer explained that conservation-related funding can be used for indoor and outdoor rebates. The County should request an amendment to the CDP for this purpose.


Teresa Sawyer explained the community cannot wait 90 days to get post cards and door hangers out to the community. Said there are people within the community that can do the design of the door hangers or postcard and be able to hand them out in a few weeks.


Carolyn Atkinson mentioned she went to many presentations on septic tank repurposing done by SLO Green Built and the County. She stated the county has taken measures to advertise repurpose programs.


Richard Margetson thanked Director Garfinkel for opening up discussion on video recording the meetings. Re-stated how water rates will go up with conservation. Explained that re-allocating wastewater conservation funds would only save approximately \$2/month per residence.

	Response from BMC Mr. Miller said the power point will be posted to the website. Director Garfinkel expressed concern that septage was being hauled to Santa Maria, along with a valuable water supply, and that the plant had not been designed to handle this loading.
9. ADJOURNMENT	Meeting was adjourned at 3:42pm

PowerPoint Presentation created by Rob Miller

4

Existing Programs

- Wastewater project indoor fixture retrofit program:
- http://conservelososos.org/program-info/
- GSWC rebates for toilets (\$125), washers (\$125), smart controllers (\$100), and sprinkler nozzles (\$4/nozzle):
- http://www.gswater.com/lososos/download/conservation_rebates/Los %20Osos%20Conservation%20Rebates.pdf
- Statewide turf rebate program:
- www.saveourwaterrebates.com

Existing Programs

5

- Fixture replacement statistics for wastewater project program:
 - Toilets: 3,239
 - Showerheads: 2,358
 - Aerators: 3,209
 - Washing machines: 100
- County Planning estimates 28 acre-ft/year of development offset conservation under Title 19

Goals for April BMC Meeting

- Review draft conservation measures
- Work with County and purveyors to confirm immediate and longer term funding source
- Initiate public information immediately

PR-1 – Cash for Grass Outreach

7

- Existing statewide measure at www.saveourwaterrebates.com
- \$2/ sq ft program (up to \$2,000) compares favorably with other local and statewide rebates
- Consider focused canvassing and mailer/door hanger

PR-2 – Clean and Close Outreach

- R
- Lateral connections have begun and are on-going
- Many contractors are still recommending tank demolition based on familiarity
- Consider immediate outreach indicating that rebates are being considered
- Clean and close is cost effective when compared to tank demolition

PR-3 – Information Outside of Prohibition Zone

- · Existing GSWC programs
- Statewide turf and toilet rebate
- Opportunity to remind private well owners that seawater intrusion is occurring

- If BMC rebates are implemented, multiple rebate sources can be confusing
- PG&E and gas company rebates
- Assist residents in eligibility and navigation of rebate process
- Maximize conservation

Indoor – 1 Hot Water Recirculation System

- Minimizes water waste while residents wait for hot water at tap
- Proposed rebate of \$300, installed cost varies by system
- Annual savings estimates vary, assume 5,000 to 10,000 gal/year saved
- Assuming 10 year life, approx. \$1,400/acre-ft saved
- With full implementation, savings could reach 50 to 100 acre-ft per year (indoor)

Indoor – 2 High Efficiency Clothes Washer

- Current County rebate: \$150
- · Proposed BMC rebate: \$250
- Annual savings estimates vary, assume 3,000 to 5,000 gal/year with 20 to 30 gallons saved per load
- Limited fixture life increases cost per acreft, estimated at approx. \$4,900.
- With full implementation, savings could reach 40 to 60 acre-ft per year (indoor)

Indoor – 3 Replace 1.6 gal/flush Toilets

- Current program allows 1.6 gal/flush toilets
- Current technology can achieve less than 1.0 gal/flush

to remain

- Exact count of 1.6 gpf toilets unavailable, but could be over 5,000
- Proposed rebate of \$250, with estimated average savings of 1,500 gal/year
- Long fixture life yields cost per rebate of approx. \$2,700/ acre ft
- Savings could reach 30 to 50 ac-ft/year

Indoor – 4 Replace 2.0 gal/min showerheads

- Current program allows 2.0 gal/min showerheads to remain
- Current technology can achieve less than
 1.5 gpm with acceptable performance
- Exact count of 2.0 gpm showerheads unavailable, but could be over 5,000
- Proposed rebate of \$40, with estimated average savings of 1,500 gal/year
- Inexpensive program yields cost per rebate of approx. \$900/ acre ft
- · Savings could reach 30 to 50 ac-ft/year

Outdoor - 1 Septic Tank Repurpose- Roof Water 15

- Proposed \$500 rebate for repurposing septic tank for roof water irrigation
- Simple access riser with mobile pump may be more cost effective for users, making rebate attractive
- Annual savings depends on number of irrigation events, estimated at 3,500 gal/year
- Long tank life yields cost per rebate of approx. \$2,300/ acre ft
- Savings with full implementation could reach 40 to 60 ac-ft/year

1.6

Outdoor – 2: Septic Tank Repurpose-Roof and Hauled Recycled Water

- Proposed \$500 rebate for repurposing septic tank for roof and hauled recycled water irrigation (limit \$500/home for repurpose options)
- State policy on recycled water for individual homes
- Proposed 10th Street filling station
- Could provide source of outdoor water if irrigation with potable water is prohibited
- Savings with full implementation could reach 70 to 90 ac-ft/year
- Savings depends on hauled quantity, but rebate cost estimated at \$1,400/acre ft

Outdoor – 3 Gray Water System

17

- Proposed \$500 rebate for gray water system (limit \$500/home for repurpose/ gray water options)
- Code and permit requirements
- Could provide source of outdoor water if irrigation with potable water is prohibited
- Savings with full implementation could reach 70 to 90 ac-ft/year
- Savings depends on irrigation quantity, but rebate cost estimated at \$1,400/acre ft

18

Outdoor – 4 Recycled Water Fill Station

- 10th Street Location
- Must be staffed during haul days
- Local programs to minimize cost of hauling could be discussed
- Economically attractive for users during periods where outdoor irrigation is limited or prohibited

Outdoor – 5 Laundry to Landscape Program

19

- Proposed \$50 rebate for laundry-only gray water system (recipients of \$500 repurpose rebate are not eligible)
- Code allows permit exemption for gravity discharge of laundry water to landscape area
- Minimum 2" of mulch, and no pump or diaper washing
- Savings with full implementation could reach 10 to 20 ac-ft/year
- Savings depends on irrigation quantity, but rebate cost estimated at \$2,600/acre ft

Next Steps

- Discuss, amend, and adopt programs
- Work with purveyors and County on short and long term funding
- Under existing conservation budget, direct staff to implement information programs to preserve repurpose flexibility

TO: Los Osos Basin Management Committee

FROM: Rob Miller, Interim Executive Director

DATE: May 18, 2016

SUBJECT: Item 5b - Approval of Budget Update and Invoice Register through April,

2016

Recommendations

Staff recommends that the Committee review and approve the report.

Discussion

Staff has prepared a summary of costs incurred as compared to the adopted budget through April, 2016 (see Attachment 1). A running invoice register is also provided as Attachment 2. Several items should be noted as the attachments are reviewed:

- With the exception of the approved basin boundary work, costs incurred in 2015 are not included.
- Work efforts authorized prior to the formation of the BMC are not included, such as the creek discharge study or legal expenses related to the final judgment.
- Invoices for some services have not yet been received from SBCC and AGP.

Payment of invoices will continue to be processed through Brownstein Hyatt as noted in previous meetings.

Attachment 1: Cost Summary (Year to Date) for Calendar Year 2016 (updated through April 2016)

			Costs Incurred Through April		
Item	Description	Budget Amount	30	Percent Incurred	Remaining Budget
	Monthly meeting administration, including preparation, staff				
1	notes, and attendance	\$50,000	\$14,738.39	29.5%	\$35,262
2	Meeting expenses - facility rent	\$4,000	\$60.00	1.5%	\$3,940
3	Meeting expenses - audio services	\$4,000	\$750.00	18.8%	\$3,250
4	Legal counsel (special counsel for funding measure)	\$10,000			\$10,000
5	Semi annual seawater intrusion monitoring	\$12,000	\$8,791.74	33.8%	\$17,208
6	Annual report - not including Year 1 start up costs	\$30,000	\$25,012.50	83.4%	\$4,988
7	Annual report - Year 1 costs	\$14,000	Combined with Item 5		
8	Grant writing (outside consultant)	\$12,000			\$12,000
9	Basin boundary definition (CHG only)	\$20,000	\$18,072.50	90.4%	\$1,928
	Funding measure including initial feasibility report, final				
10	report, and proposition 218 process	\$120,000			\$120,000
11	Conservation programs (not including member programs)	\$10,000			\$10,000
	Subtotal	\$286,000			
	10% Contingency	\$28,600			
	Total	\$314,600	\$67,425.13	21.4%	\$247,175
	LOCSD (38%)	\$119,548			
	GSWC (38%)	\$119,548			
	County of SLO (20%)	\$62,920			
	S&T Mutual (4%)	\$12,584			

Notes

- 1. Costs incurred in 2015 for legal and administration are not included.
- 2. Costs are recognized in month service provided, as opposed to when paid.
- 3. Tasks approved by ISJ prior to BMC (ie, MKN work on creek discharge) are not included.

Attachment 2: Invoice Register for Los Osos BMC for Calendar Year 2016 (through April 2016)

Vendor	Invoice No.	Amount	Month of Service	Description	Budget Item
Wallace Group	40966	\$1,452.50	January	BMC admin services	1
Wallace Group	41097	\$3,614.00	February	BMC admin services	1
Wallace Group	41313	\$4,961.75	March	BMC admin services	1
Wallace Group	41513	\$4,710.14	April	BMC admin services	1
South Bay CC	77	\$60.00	February	Facility rental	2
AGP	6531	\$375.00	February	Audio services	3
AGP	6561	\$375.00	April	Audio services	3
Cleath Harris	20160306	\$16,712.50	March	Annual report preparation	6
Cleath Harris	20151221	\$10,697.50	December, 2015	Basin boundary study	9
Cleath Harris	20160117	\$4,020.00	January	Basin boundary study	9
Cleath Harris	20160218	\$3,355.00	February	Basin boundary study	9
Cleath Harris	20160402	\$8,300.00	April	Annual report preparation	6
Cleath Harris	20160403	\$8,791.74	April	Annual Monitoring (2016)	5
Total		\$67,425.13			

TO: Los Osos Basin Management Committee

FROM: Rob Miller, Interim Executive Director

DATE: May 18, 2016

SUBJECT: Item 6 – Executive Director's Report

Recommendations

Staff recommends that the Committee receive and file the report, and provide staff with any direction for future discussions.

Discussion

This report was prepared to summarize administrative matters not covered in other agenda items and also to provide a general update on staff activities.

Status of Zone of Benefit Analysis

The County Flood Control District has selected David Taussig & Associates (DTA) to perform the initial work in an amount not to exceed \$14,250. DTA is currently working on their first deliverable, and the BMC will have an opportunity to review it at either the June or July meeting.

Grant Update and Schedule

WSC has been retained under contract with BHFS as approved at the last meeting, and a detailed strategy update is anticipated during the July BMC meeting.

Water Conservation Program

The attached post card was recently sent to wastewater project customers to encourage them to retain septic tanks for future irrigation use. Staff is currently working cooperatively with SLO County to further define the financial structure necessary to advance the rebate program considered at the previous BMC meeting. In addition, conservation will be in included in the long term funding strategy under development by DTA.

Basin Boundary Modification Request Update

The County submitted the Los Osos Groundwater Basin Boundary Modification Request by the State Department of Water Resources' (DWR) March 31st deadline. DWR held an additional 30-day public comment period in April, which has now closed. The County's request and related materials can be accessed at: http://sgma.water.ca.gov/basinmod/

DWR is currently reviewing the boundary modification request. DWR plans to release draft recommended boundary modifications in late June, followed by public meeting(s) in mid July. DWR anticipates presenting the draft recommendations to the California Water Commission on July 20th, and presenting final boundaries on August 17th.

Follow Up on Potential Creek Discharge

Staff recently followed up with the owner of the domestic well(s) that would be impacted by the proposed creek discharge. As before, no fatal flaws were identified, and the next step will be to assemble a draft written understanding that would allow the project to move forward into the environmental review and permitting stage

Initial Data Release from April, 2016 Sea Water Intrusion Monitoring

The attached data table provides a summary of the water quality results received to date from the April, 2016 monitoring event. Staff is still awaiting results from Well LA11. Additional comments on the results will provided during the meeting.

LOS OSOS BASIN MANAGEMENT COMMITTEE 2122 9TH STREET, SUITE 102 LOS OSOS, CA 93402

PLACE POSTAGE STAMP HERE

LOS OSOS BASIN MANAGEMENT COMMITEE

LOS OSOS BASIN MANAGEMENT COMMITEE

On April 20, 2016, the Los Osos Basin Management Committee discussed a draft water conservation program intended to maximize the efficiency of water use in the Los Osos groundwater basin. The draft program includes a number of outdoor measures that will reduce the use of potable water for landscape irrigation. If the program is adopted and funded, a \$500 rebate may be available for residents who elect to re-use their septic tank to store and irrigate with roof water, recycled water, or other non-potable water. Residents are encouraged to seriously consider sanitizing and keeping their septic tanks (Clean and Close) in order to take full advantage of potential future rebates.

Additional information can be found at the BMC web site at:

http://www.slocountywater.org/site/Water %20Resources/LosOsos/

DRAFT Table Water Quality Results - Lower Aquifer Monitoring

Station ID \	Well Name	Basin Plan Well ID	Aquifer Zone	Date	НСО3	Total Hardness	Cond	рН	TDS	CI	NO3	SO4	Ca	Mg	К	Na
	vveii ivairie			Date	mg/l	mg/l	umhos/ cm		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
				2/14/2005	350	370	1300	8.1	840	77	ND	190	51	58	6.1	110
				11/20/2009	300	360	1150	7.5	732	83	ND	190	51	58	4.4	95
30S/10E-12J1	MBO5 DWR	LA11	Е	7/24/2014	360	489	1290	7.7	780	105	ND	212	69	77	5	88
	Obs.			4/22/2015	360	475	1290	7.8	810	112	ND	189	65	76	5	88
				10/1/2015	250	486	1280	7.3	840	117	ND	188	68	77	4	85
				4/20/2016 12/20/2004	72	230	720	7.1	410	nding 150	7	14	38	33	1.4	29
				1/14/2010	35	260	778	6	435	200	7.1	13	41	38	1.5	33
	GSWC			7/24/2014	80	418	1200	7.3	910	303	7.6	16	67	61	2	39
30S/10E-13J4*	Rosina	LA10	D	4/22/2015	80	431	1230	7.1	750	331	8.3	20	69	63	2	39
	7.00			10/5/2015	70	460	1280	7	950	329	7.3	19	74	67	2	41
				4/26/2016	80	412	1170	7.1	840	299	8	18	66	60	2	37
				11/22/2004	51	810	2900	7.3	1500	810	2.4	140	130	120	4.7	210
				12/9/2009	55	1100	3740	7.1	2170	1100	2.2	220	160	160	4.8	370
30S/10E-13M2	Howard East	none	C,D	8/4/2014	60	757	3340	7.1	2450	990	2.5	178	117	113	5	382
000/102 101/12	riowara Laot	110110	0,5	4/21/2015	60	739	3430	7.3	1930	950	2.5	178	117	113	5	382
				4/21/2015	30	756	3370	7.1	2140	960	2.4	185	115	114	5	342
				4/20/2016	50	726	3520	7.2	2190	941	3.1	179	113	108	5	400
				11/23/2004	42	80 89	390	6.9	200	67 73	26 27	9.2	13 15	12	1.7	38
				11/19/2009 7/24/2014	41 50	100	386 438	6.8 7.4	267 270	76	31	11 10	17	13 14	1.4	38 38
30S/10E-13N	S&T #5	LA8	D	4/21/2014	50	98	445	6.9	280	77	33.9	11	16	14	2	38
				10/6/2015	40	98	422	7.2	310	75	30.9	10	16	14	1	38
				4/20/2016	20	97.5	446	7	320	76	32	12	16	14	1	38
				12/20/2004	64	130	610	7	310	110	20	19	22	19	1.6	50
				11/20/2009	60	150	611	7.1	347	130	18	22	23	22	1.6	52
000/405 0404	GSWC	1.40	_	7/24/2014	40	69	339	7.6	240	46	37	6	11	10	1	32
30S/10E-24C1	Cabrillo	LA9	D	4/22/2015	70	117	530	7.3	320	95	24.2	16	19	17	2	45
				10/5/2015	50	75	349	7.6	270	50	33.4	7	12	11	1	34
				4/26/2016	70	115	499	7	300	90	24.6	16	18	17	2	44
				11/18/2004	250	270	790	7.5	410	73	ND	39	44	40	2.3	48
				11/19/2009	220	290	782	7.4	465	92	ND	46	46	42	1.9	53
30S/11E-7Q3	LOCSD 8th	LA12	D	7/23/2014	290	303	876	7.6	460	91	ND	43	49	44	2	54
300/112120	St.	_,		4/21/2015	290	305	897	7.7	500	101	ND	55	48	45	2	59
				10/6/2015	280	298	828	7.4	490	91	ND	46	47	44	2	55
				4/20/2016	190	307	907	7.7	520	91	ND	49	49	45	2	54
				1/14/2005 11/20/2009	150 120	150 160	440 455	7.5 7.3	290 255	34 42	9.7 19	11 12	24 25	22 23	1.4	28 29
	So. Bay Obs.			7/23/2014	150	166	500	7.6	270	43	28	10	27	24	2	28
30S/11E-17E8	Middle	LA22	D	4/21/2015	150	157	481	7.6	270	49	31.4	13	25	23	1	28
				10/1/2015	120	164	475	7.4	290	44	29.2	10	26	24	1	28
				4/19/2016	150	164	476	6.9	290	45	30.5	12	26	24	1	29
				Jan 2003	250		510	7.1	290	37	ND	21	41	25	1.3	35
				11/20/2009	230	220	638	7.3	357	41	2.4	30	35	33	1.7	37
30S/11E-17N10	GSWC So.	LA20	C,D,E	7/24/2014	280	232	646	7.7	370	37	2.3	24	37	34	2	41
230,2 171110	Bay #1			4/22/2015	290	234	653	7.4	360	43	2.5	27	36	35	2	42
				10/5/2015	280	227	614	7.2	370	38	2.4	23	35	34	2	41
				4/26/2016	230	227	629	7.1	360	39	2.6	27	35	34	2	40
		LA18		1/19/2005	260	290	650	7.5	370	33	ND	38		33	2.5	28
	10th St. Obs.			11/20/2009 7/24/2014	230 290	220 271	620 647	7.5 7.5	378 380	32 28	ND ND	40 34	51 56	24 32	1.8	23 27
30S/11E-18K8	East (Deep)		E	4/21/2014	290	265	634	7.5	400	33	ND	39	55	31	2	27
	Luci (Deep)			10/19/2015	230	256	621	7.7	370	29	ND	33	53	30	2	26
				4/20/2016	190	265	700	7.5	390	31	ND	38	55	31	2	26
		none	C,D	May 2002	250		550	6.9	320	37	1	26	31	32		39
30S/11E-18K9	LOCSD 10th St.			11/20/2009	180	160	539	7.2	307	36	4.6	27	27	24	1.3	32
				7/23/2014	220	190	546	7.7	300	32	4.3	20	30	28	1	35
				4/21/2015	190	108	504	7.6	270	38	7	20	17	16	1	
				10/6/2015	50	62	248	7.2	190	31	26.2	3	10	9	ND	21
				4/20/2016	130	121	382	7.5	220	32	14.6	12	19	18	1	27
30S/11E-18L2** ND = Not Detecter	LOCSD Palisades	I A15	D,E	11/18/2004	220	330	880	7.3	420	120	ND	31	54	48	2.2	40
			_ ,_	11/19/2009	200	590	1460	7.2	890	360	1.8	39	94	86	2	44
			D	7/23/2014	250	293	783	7.8	390	90	1.8	26	48	42	2	40
				4/29/2015	80	78	348	7.4	230	43	22	10	13	11	ND	30
				10/28/2015	230	288	782	7.4	420	104	2.8	29	46	42	ND	36 43
				4/27/2016	230	264	796	7.3	450	93	4.1	28	43	38	2	43

^{*}Chloride Concentrations at 13J4 have varied seasonally by 100+ mg/l, and are affected by well production, so fluctuations are expected.

*Water from 18L2 affected by borehole leakage/upper aquifer influence when inactive

TO: Los Osos Basin Management Committee

FROM: Rob Miller, Interim Executive Director

DATE: May 11, 2016

SUBJECT: Item 7a – Receive Draft 2015 Annual Report

Recommendations

Staff recommends that the Committee receive a presentation and provide input to staff in preparation for the June 15, 2016 BMC meeting.

Discussion

Section 5.8.3 of the Final Judgment requires that the preparation of an Annual Report by June 30 of each year. In the February 2016 meeting, the BMC retained Cleath Harris Geologists (CHG) to prepare the technical portions of the first BMC Annual Report for calendar year 2015. The draft work product prepared by CHG is attached for Committee review and comment. Staff will also provide a presentation during the meeting to emphasize the key findings within the draft document. It should be noted that the report does not provide data or findings from the April 2016 seawater monitoring event, given that the report focuses only on calendar year 2015. April 2016 data was not available as of the date of this staff note, but additional information will be provided at the BMC meeting if available.

In the Table of Contents of the draft Annual Report, a placeholder chapter is noted with the heading "Adaptive Management Program". This chapter will be prepared over the next 30 days by purveyor staff for consideration in the June BMC meeting. In terms of this first Annual Report, the framework for adaptive management and contingency planning will be provided, including a series of objectives and milestone dates for the BMC to complete and adopt a draft adaptive management plan over the next 4 to 6 months.

Financial Considerations

Budget items 5, 6, and 7 in the adopted calendar year 2016 budget relate to the groundwater hydrology services required for calendar year 2016, including the preparation of the first Annual Report, with a total allocated amount of \$56,000. An additional \$5,000 of contingency funds was added in the February BMC meeting, bringing the total to \$61,000 for work contracted through CHG. The preparation of the Annual Report represents \$30,000 of this budget. Through April, a total of \$25,013 has been expended on the Annual Report.

LOS OSOS BASIN PLAN GROUNDWATER MONITORING PROGRAM 2015 ANNUAL REPORT

Prepared for the

BASIN MANAGEMENT COMMITTEE

MAY 2016

CLEATH-HARRIS GEOLOGISTS 71 Zaca Lane, Suite 140 San Luis Obispo, California 93401

(805) 543-1413

TABLE OF CONTENTS

<u>SECTION</u>	<u>PAG</u>	Έ
1. INTRO	ODUCTION	1
2. BACK	GROUND	1
2.1 G	roundwater Monitoring Program History	2
	roundwater Monitoring Program Design	
2.2.1	Water Level Monitoring	5
2.2.2	Water Quality Monitoring	6
2.2.3	Monitoring Frequency	8
3. CONE	OUCT OF WORK	9
3.1 Se	ervices Provided	9
3.2 Fi	eld Methods	9
3.2.1	Elevation Datum	9
3.2.2	Water Level Monitoring Procedures	. 0
3.2.3	Groundwater Sampling Procedures	. 0
3.3 M	Ionitoring Staff Affiliations	. 0
4. MONI	TORING RESULTS	.1
4.1 W	Vater Level Monitoring Results	.1
4.2 W	Vater Quality Results	.8
4.3 G	eophysics 2	22
5. GROU	UNDWATER PRODUCTION	22
6. PREC	IPITATION AND STREAMFLOW	3
7. DATA	INTERPRETATION	25
7.1 W	ater Level Contour Maps	15
7.2 W	ater Level Hydrographs	26
7.3 Se	eawater Intrusion	36
7.4 G	roundwater in Storage	27
7.5 Ba	asin Metrics	29
7.5.1	Basin Yield and Development Metrics	29
7.5.2	Water Level, Chloride, and Nitrate Metrics	30
8. BASIN	N STATUS 3	3
9. RECO	MMENDATIONS	3
10. ADA	APTIVE MANAGEMENT PROGRAM 3	34
11. REF	ERENCES 3	34

List of Tables

- Table 1 Water Quality Monitoring Constituents
- Table 2 CEC Monitoring Constituents
- Table 3 Spring 2015 Water Levels First Water Group
- Table 4 Spring 2015 Water Levels Upper Aquifer
- Table 5 Spring 2015 Water Levels Lower Aquifer
- Table 6 Fall 2015 Water Levels First Water
- Table 7 Fall 2015 Water Levels Upper Aquifer
- Table 8 Fall 2015 Water Levels Lower Aquifer
- Table 9 Fall 2015 Water Quality Results First Water and Upper Aquifer
- Table 10 Spring 2015 Water Quality Results Lower Aquifer
- Table 11 Fall 2015 Water Quality Results Lower Aquifer
- Table 12 Municipal Groundwater Production (2014-2015)
- Table 13 Basin Groundwater Production (2014-2015)
- Table 14 Active and Former Precipitation Stations
- Table 15 Maximum Stream Gage Stage for Los Osos Creek, 2015 Water Year
- Table 16 Spring and Fall 2015 Groundwater in Storage (<250 mg/l Chloride)
- Table 17 Spring 2005 and Spring 2015 Groundwater in Storage Comparison
- Table 18 Water Level Metric
- Table 19 Chloride Metric Graph
- Table 20 Nitrate Metric

List of Figures

- Figure 1 Basin Location and Plan Areas
- Figure 2 Groundwater Monitoring Program First Water Wells
- Figure 3 Groundwater Monitoring Program Upper Aquifer Wells
- Figure 4 Groundwater Monitoring Program Lower Aquifer Wells
- Figure 5 Basin Aquifers
- Figure 6 Hexavalent Chromium in Groundwater (2014-2015)
- Figure 7 Basin and Western Area Production (1970-2015)
- Figure 8 Central and Eastern Area Production (1970-2015)
- Figure 9 Cumulative Departure from Mean Rainfall
- Figure 10 Spring 2015 Water Level Contours First Water
- Figure 11 Spring 2015 Water Level Contours Upper Aquifer
- Figure 12 Spring 2015 Water Level Contours Lower Water
- Figure 13 Fall 2015 Water Level Contours First Water
- Figure 14 Fall 2015 Water Level Contours Upper Aquifer
- Figure 15 Fall 2015 Water Level Contours Lower Water
- Figure 16 Water Level Hydrographs Perched Aquifer / First Water
- Figure 17 Water Level Hydrographs Upper Aquifer

<u>List of Figures (Continued)</u>

- Figure 18 Water Level Hydrographs Lower Aquifer
- Figure 19 Seawater Intrusion Front (2005 and 2015)
- Figure 20 Conceptual Storage Compartments
- Figure 21 Basin Yield Metric Comparison
- Figure 22 Water Level Metric Well Hydrographs
- Figure 23 Water Level Metric and Chloride Metric Graph
- Figure 24 Nitrate Metric Graph

List of Appendices

- Appendix A Groundwater Monitoring Program Well Information
- Appendix B Field Methods
- Appendix C Laboratory Analytical Reports for 2015 Lower Aquifer Monitoring
- Appendix D Geophysics at 30S/10E-13M1
- Appendix E Land Use and Water Use Areas
- Appendix F Precipitation and Streamflow Data Summary
- Appendix G Storage Calculation Example and Specific Yield Estimates

1. INTRODUCTION

This is the first annual report for the Los Osos groundwater basin. The basin was adjudicated in October 2015 and is now managed by the Los Osos Groundwater Basin Management Committee (BMC), consisting of representatives from Los Osos Community Services District (LOCSD), Golden State Water Company (GSWC), S&T Mutual Water Company (S&T), and the County of San Luis Obispo (County).

The 2015 Annual Report describes basin activities related to the Groundwater Monitoring Program, and provides results and interpretation of these activities. The Groundwater Monitoring Program is necessary to accomplish the following continuing goals set forth in Section 2.4 of the Basin Plan:

- 1. Provide for a continuously updated hydrologic assessment of the Basin, its water resources and sustainable yield.
- 2. Create a water resource accounting which is able to meet the information needs for planning, monitoring, trading, environmental management, utility operations, land development and agricultural operations.

The Groundwater Monitoring Program is also necessary to support other goals of the Basin Plan, including prevention of seawater intrusion, establishing a long-term environmentally and economically sustainable and beneficial use of the basin, quantification of water rights in the basin, and the equitable allocation of costs associated with basin management. The program will provide significant overlap with several regulatory requirements, including: Senate Bill 1168, Senate Bill 1319, and Assembly Bill 1739 which collectively establish the Sustainable Groundwater Management Act (SGMA); the California Statewide Groundwater Elevation Monitoring Program (CASGEM); the SWRCB's salt and nutrient monitoring guidelines as adopted in the state Recycled Water Policy; and the Recycled Water Management Plan requirements for the Los Osos Wastewater Project (LOWWP).

This report is organized into seven sections, including two sections on introductory and background information, two sections on the conduct of work and analytical results of the monitoring program, two sections on data interpretation and basin status, and a final section on recommendations for the monitoring program.

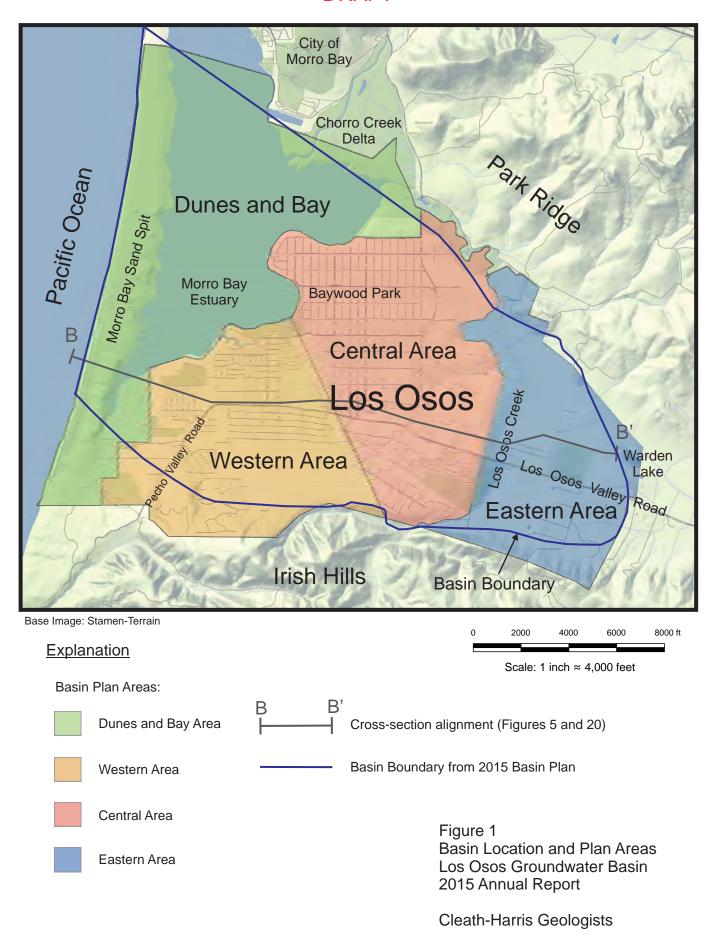
2. BACKGROUND

In August 2008, the Superior Court of the State of California for the County of San Luis Obispo County (Court) approved an Interlocutory Stipulated Judgment (ISJ) between LOCSD, GSWC, S&T, and the County. Under the ISJ, these parties formed a working group, undertaking technical studies and management discussions that produced the Basin Plan in January 2015. The Basin Plan presents a comprehensive groundwater management strategy and serves as the cornerstone of a

physical solution to address the significant problems facing the basin and for restoration of basin water resources, while respecting existing water rights. The Groundwater Monitoring Program is a key component of the Basin Plan, providing water level and water quality data that serve as measures of effectiveness for Basin Plan programs and activities with respect to the restoration of basin water resources.

A boundary modification application was initiated in 2015 by the County for submittal to the Department of Water Resources (DWR). The proposed scientific boundary modification would adjust the current DWR Bulletin 118 boundary to coincide, with minor adjustments, to the basin boundary used in the Basin Plan. The Basin Plan areas and basin boundary are shown in Figure 1.

2.1 Groundwater Monitoring Program History


Groundwater monitoring has been performed by public agencies, water purveyors, and consultants for various basin studies and programs over several decades. The following lists include historical studies, monitoring reports, and monitoring programs with a major focus on basin water levels and water quality.

Historical Studies

- Department of Water Resources, 1973, Los Osos-Baywood Ground Water Protection Study;
- Department of Water Resources, 1979, *Morro Bay Sandspit Investigation*;
- Brown & Caldwell, 1983, Los Osos Baywood Park Phase I Water Quality Management Study;
- U. S. Geological Survey, 1988, *Hydrogeology and Water Resources of the Los Osos Valley Ground-Water Basin, San Luis Obispo County, Water-Resources Investigation* 88-4081;
- Metcalf & Eddy, 1995, *Task F Sanitary Survey and Nitrate Source Study*;
- Cleath & Associates, 2005, Sea Water Intrusion Assessment and Lower Aquifer Source Investigation of the Los Osos Valley Groundwater Basin
- Cleath & Associates, 2006, Task 3 Upper Aquifer Water Quality Characterization;

Monitoring Reports:

 San Luis Obispo County Engineering Department, 1999, Baywood Groundwater Study -Fourth Quarter 1998;

- Cleath & Associates, 2002-2006, Quarterly and Semi-Annual Groundwater Monitoring Reports for the Los Osos Nitrate Monitoring Program.
- Cleath-Harris Geologists, 2010, Water Quality Monitoring Results Summary, November 2009-January 2010, Los Osos Valley Groundwater Basin;
- Cleath-Harris Geologists, 2012-2013, Semi-Annual Groundwater Monitoring Reports for Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring;
- Rincon Consultants, 2014, Semi-Annual Groundwater Monitoring Reports for Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring;
- Cleath-Harris Geologists, 2014-2015, Semi-Annual Groundwater Monitoring Reports for Lower Aquifer;
- Cleath-Harris Geologists, 2015, Semi-Annual Groundwater Monitoring Reports for Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring;
- Water Quality Reports published annually by the water purveyors.

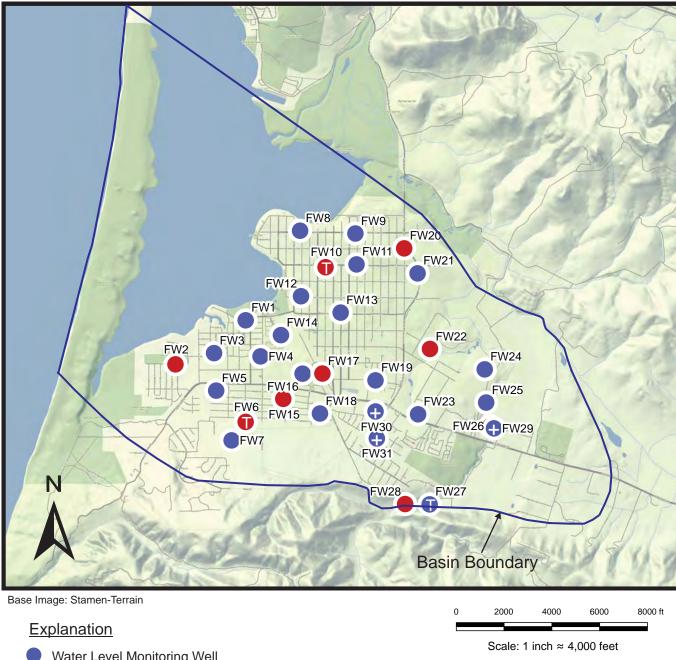
Monitoring Programs:

- San Luis Obispo County Public Works, Semi-Annual Water Level Monitoring Program. Period of record for individual wells varies; most begin in 1970's and 1980's, some end in 1999, and the program remains active.
- Purveyor Water Supply Well Monitoring. Period of record for individual wells varies; program remains active.
- 2002-2006 Los Osos Nitrate Monitoring Program. Water levels measured quarterly to semi-annually; program ended October 2006.
- 2012-2015 Los Osos Water Recycling Facility (LOWRF) Baseline Groundwater Monitoring Program. Water levels measured semi-annually; program remains active.
- 2014-2015 Lower Aquifer Monitoring Program. Water levels measured semi-annually; program will be replaced and expanded as BMC Groundwater Monitoring Program in 2016.

In addition to water quality and water level reporting, this 2015 Annual Report compiles groundwater production, precipitation, and stream flow data from the following sources:

 Community water purveyors (LOCSD, GSWC, and S&T) provide metered production records.

 San Luis Obispo County Department of Public Works provides precipitation at the Los Osos Landfill and stream flow data for Los Osos Creek.


Production for private domestic and agricultural irrigation wells are not metered. Production estimates for these wells are based on water use surveys performed in 2009 with adjustments from aerial photo review.

2.2 Groundwater Monitoring Program Design

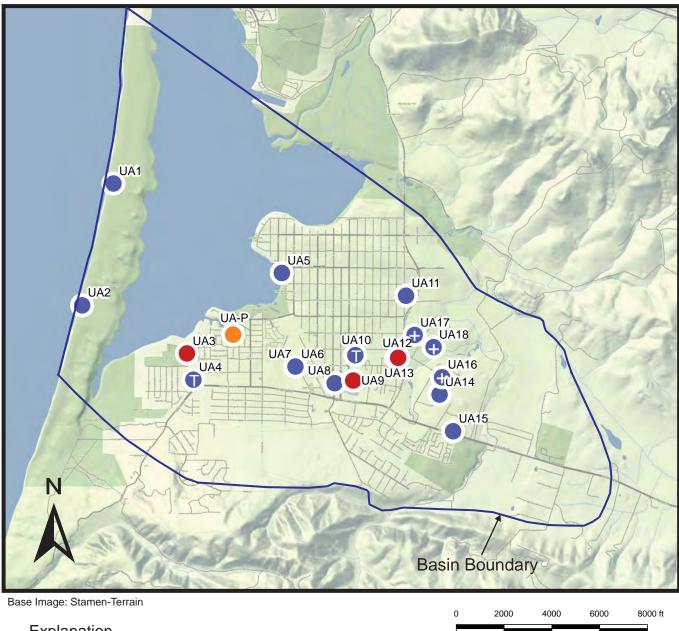
The purpose of the Groundwater Monitoring Program is to collect and organize groundwater data on a regular basis for use in management of the basin. Design of the Groundwater Monitoring Program is detailed in Chapter 7 of the Basin Plan. The basic elements of the program are as follows:

- Monitor long-term groundwater level trends in a network of wells for three monitoring groups within the basin: First Water (FW), Upper Aquifer (UA), and Lower Aquifer (LA).
- Monitor seasonal fluctuations and long-term water quality trends at selected wells in each of the three monitoring groups.
- Compile hydrologic data pertinent to basin management, including groundwater production from the two principal water supply aquifers (Upper Aquifer and Lower Aquifer), wastewater disposal and recycled water use, local precipitation data and County stream gage records for Los Osos Creek.
- Organize historical and ongoing water production, water level and water quality monitoring data into three comprehensive databases, facilitating access and analysis.
- Collect data sufficient to evaluate the effectiveness of basin management strategies adopted in the Basin Plan via established metrics.

There are a total of 73 wells in the Groundwater Monitoring Program, including 35 monitoring wells, 15 municipal wells (active and inactive) and 23 private wells (pending well owner participation). Groundwater monitoring wells were chosen for their specific characteristics and to achieve horizontal and vertical distribution across the basin. The Groundwater Monitoring Program coverage across the basin area is shown in Figures 2, 3, and 4. Correlation between Groundwater Monitoring Program well numbers and state well numbers, along with well construction information and monitoring tasks are included in Appendix A. Twelve existing wells are recommended for addition to the monitoring program. Most of these wells are already monitored under existing programs and could be included in the Groundwater Monitoring Program for less than \$3,000 in annual costs. Construction of nested Upper Aquifer and Lower Aquifer monitoring wells near the bay was recommended in the Basin Plan. A budget of \$100,000 would be appropriate for new well construction.

Water Level Monitoring Well

Recommended Water Level Monitoring Well Addition (existing well)

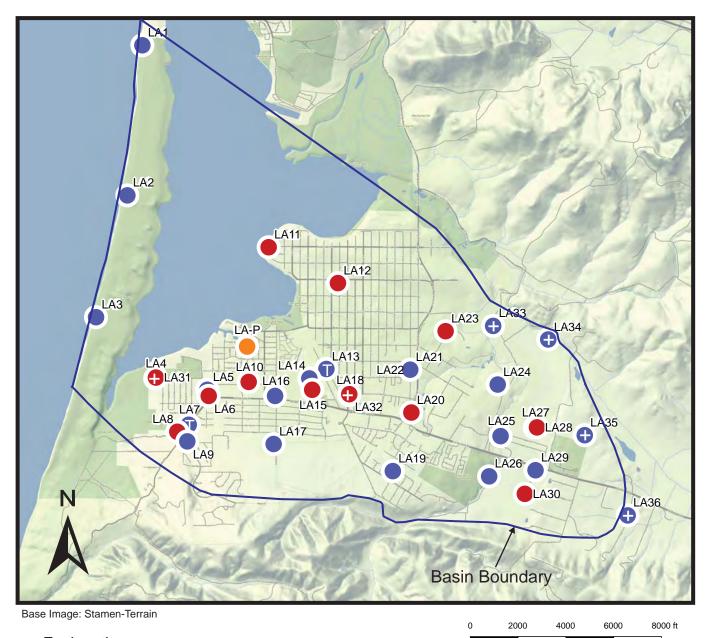

Water Level Transducer

Water Level and Water Quality Monitoring Well

Water Level Transducer and Water Quality Monitoring Well

Figure 2 **Groundwater Monitoring Program** First Water Wells Los Osos Groundwater Basin 2015 Annual Report

Cleath-Harris Geologists


Explanation

Water Level Monitoring Well

- Recommended Water Level Monitoring Well Addition (existing well)
- Water Level Transducer
- Water Level and Water Quality Monitoring Well
- Water Level Transducer and Water Quality Monitoring Well
- Planned New Monitoring Well Construction

Figure 3 Groundwater Monitoring Program Upper Aquifer Wells Los Osos Groundwater Basin 2015 Annual Report

Scale: 1 inch ≈ 4,000 feet

Explanation

Water Level Monitoring Well

- Recommended Water Level Monitoring Well Addition (existing well)
- Water Level Transducer
- Water Level and Water Quality Monitoring Well
- Water Level Transducer and Water Quality Monitoring Well
- Recommended Water Quality Monitoring Well Addition (existing well)
- Planned New Monitoring Well Construction

Figure 4
Groundwater Monitoring Program
Lower Aquifer Wells
Los Osos Groundwater Basin
2015 Annual Report

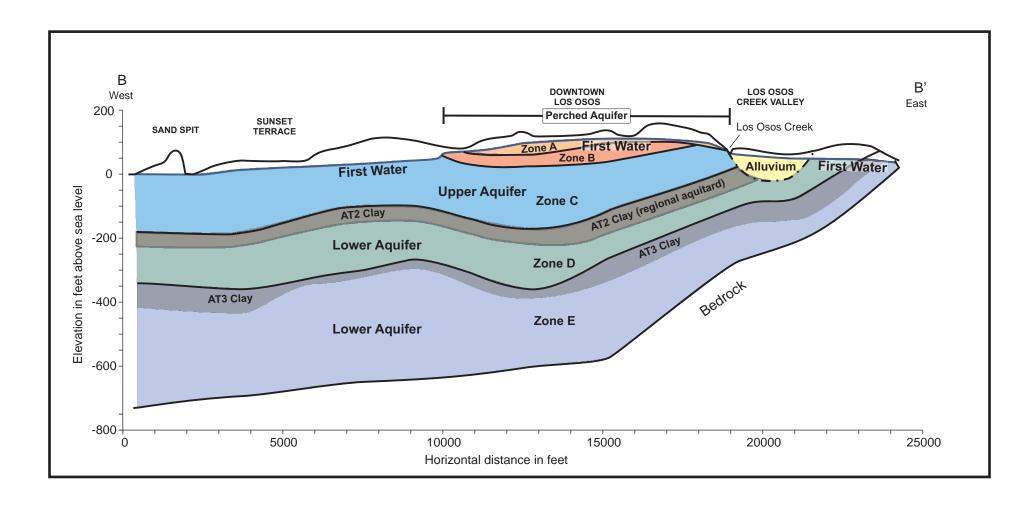
Scale: 1 inch ≈ 4,000 feet

2.2.1 Water Level Monitoring

Groundwater elevations are measures of hydraulic pressure in an aquifer. Groundwater moves in the direction of declining pressure head, and groundwater elevation contours can be used to show the direction and hydraulic gradient of groundwater movement. Changes to groundwater in storage within an aquifer can also be estimated by changes in the hydraulic pressure. Water level monitoring is a fundamental tool in characterizing basin hydrology, and will be performed at all Groundwater Monitoring Program locations. Eight monitoring locations are scheduled to be equipped with water level transducers, which will provide an efficient and high level of resolution for tracking the dynamic changes in aquifer pressures.

Of the 73 wells in the groundwater monitoring network, 28 are in First Water, 15 are in the Upper Aquifer, and 30 are in the Lower Aquifer. Laterally, 31 water level monitoring wells are in the Western Area, 30 are in the Central Area, and 12 are in the Eastern Area. The 12 additional wells recommended for the monitoring program include 3 First Water, 3 Upper Aquifer, and 6 Lower Aquifer wells.

First Water - Perched and Alluvial Aquifers


The First Water group refers to wells screened within the first 50 feet of groundwater across the basin, regardless of the aquifer (Figure 5). First Water is the interface where percolating waters, including precipitation and return flows from irrigation and wastewater, mix with basin waters. Where first water rises to the surface, it also impacts drainage and is associated with flooding issues in low-lying areas. First water extends across the basin, and may be present in dune sands, Paso Robles Formation deposits, or Los Osos Creek alluvium. Selected first water wells, including those in downtown Los Osos are used to represent the perched aquifer (Zones A and B) and alluvial aquifer for water level contouring.

Upper Aquifer

The upper aquifer (Zone C) refers to the non-perched water supply aquifer above the regional aquitard (Figure 5). As noted above, the top portion of the upper aquifer may also be considered first water in certain basin areas. Historically, the upper aquifer was the main water supply to the community, and is still the main source of water to rural residential parcels. A significant increase in upper aquifer production is planned for the future; monitoring the upper aquifer in the Urban Area is important to both local purveyors and private domestic water users.

Lower Aquifer

The lower aquifer refers to water bearing zones below the regional aquitard. There are both Paso Robles Formation and Careaga Formation deposits in the lower aquifer. The base of the lower aquifer is claystone and sandstone bedrock of the Pismo and Franciscan Formations, although the effective base of fresh water lies above bedrock at the western edge of the basin. The rising axis of the regional syncline is interpreted to cause the regional aquitard to crop out along the west banks of

Cross-section alignment shown in Figure 1

Figure 5 Basin Aquifers Los Osos Groundwater Basin 2015 Annual Report

Los Osos Creek, and brings the lower aquifer in contact with the Los Osos Creek alluvium. There are two generalized aquifer zones within the lower aquifer. Zone D lies between the regional aquitard (AT2 clay) and a deeper aquitard (AT3 clay). Zone E is below the AT3 clay (Figure 5).

Lower aquifer Zone D is the currently the main water supply source for the community. Sea water intrusion has been advancing at increasing rates over time, and a significant reduction in lower aquifer production in the western area is necessary to halt intrusion.

2.2.2 Water Quality Monitoring

Groundwater quality monitoring requirements are highly variable, depending on the purpose of monitoring. General minerals and nitrate are common water quality constituents of analysis for groundwater basin investigations. There are many other classes of water quality constituents of concern, however, such as volatile organic compounds, inorganic compounds (metals), petroleum hydrocarbons or emerging contaminants. Many of these are regulated and have drinking water standards. The purveyors monitor many of these constituents and data from those monitoring efforts will be incorporated into the Groundwater Monitoring Program.

Water Quality Monitoring Constituents

Constituents of analysis for the Groundwater Monitoring Program have been selected to focus on salt loading and associated nitrate impacts, seawater intrusion and wastewater disposal. Table 1 lists the general mineral constituents, including nitrate, which will be monitored as part of the program. TDS and specific conductance are standard measures for groundwater mineralization and salinity. Temperature and pH are parameters that are routinely measured during sampling to confirm that the groundwater samples represent the aquifer. Beginning in 2016, these constituents will be tested in the wells designated for water quality monitoring, which are distributed laterally and vertically across the basin (Figures 2, 3 and 4). Sampling at private wells will be pending private well owner participation in the Groundwater Monitoring Program.

Table 1. Water Qua	Table 1. Water Quality Monitoring Constituents											
Constituent	Reporting Limit	Units										
Specific Conductance	1	μs/cm										
pH (field)	0.01	pH units										
TDS	20	mg/L										
Carbonate Alkalinity	10	mg/L										
Bicarbonate Alkalinity	10	mg/L										
Total Alkalinity	10	mg/L										
Chloride	1	mg/L										
Nitrate - Nitrogen	0.1	mg/L										
Sulfate	2	mg/L										
Boron	0.1	mg/L										
Calcium	1	mg/L										
Magnesium	1	mg/L										
Potassium	1	mg/L										
Sodium	1	mg/L										
Temperature (field)	0.1	°F										

Additional constituents are analyzed in the general minerals suite performed by the analytical laboratory. Lower Aquifer (Well LA4) will be monitored using down hole geophysics (natural gamma and induction logs) to provide a unique measure of vertical seawater intrusion over time. The well is located near the Sea Pines Golf Course in the Western Area.

Constituents of Emerging Concern

Monitoring Constituents of Emerging Concern (CECs) is a requirement of salt and nutrient management plans adopted pursuant to the State Water Resources Control Board Recycled Water Policy. Such monitoring can measure potential dilution and soil-aquifer treatment of recycled water constituents, and travel time and movement of recycled water. As part of the LOWWP, the County is also required by the Regional Water Quality Control Board Monitoring and Reporting Program Order No. R3-2011-0001 (MRP) to monitor recycled water for CECs on an annual basis.

The initial CECs to be monitored are listed in Table 2, and were selected based on the Recycled Water Policy. There are three types of CECs, each of which has a different function. Health-based indicators directly monitor the presence of classes of constituents in groundwater, while performance-based and surrogate indicators measure the effectiveness of the treatment process. The list of CECs is not intended to be comprehensive but representative. Additional CECs may be added to (or removed from) the monitoring list once data has been collected and analyzed, subject to approval by the Basin Management Committee. CEC monitoring was not performed in 2015.

Ta	Table 2. CEC Monitoring Constituents										
Constituent or Parameter	Type of Constituent	Type of Indicator	Reporting Limit (µg/L)								
17β-estradiol	Steroid Hormones	Health	0.001								
Triclosan	Antimicrobial	Health	0.050								
Caffeine	Stimulant	Health	0.050								
NDMA	Disinfection Byproduct	Health	0.002								
Gemfibrozil	Pharmaceutical Residue	Performance	0.010								
DEET	Personal Care Product	Performance	0.050								
Iopromide	Pharmaceutical Residue	Performance	0.050								
Sucralose	Food additive	Performance	0.100								
Ammonia	N/A	Surrogate	N/A								
Nitrate	N/A	Surrogate	N/A								
Total Organic Carbon	N/A	Surrogate	N/A								
UV Light Absorption	N/A	Surrogate	N/A								
Conductivity	N/A	Surrogate	N/A								

2.2.3 Monitoring Frequency

Monitoring frequency is the time interval between data collection. Seasonal fluctuations relating to groundwater are typically on semi-annual cycles in coastal California, correlating with precipitation, recharge, water levels and often well production. The monitoring schedule for groundwater levels collected under the BMC Groundwater Monitoring Program will coincide with seasonal water level fluctuations, with higher levels in April (Spring) and lower levels in October (Fall). Spring water levels collected under the LOWRF Baseline Program (First Water and Upper Aquifer groups) may extend into May, and Fall water levels may extend into November. A semi-annual monitoring frequency provides a measure of these seasonal cycles, which can then be distinguishable from the long-term trends. At the transducer-monitored locations, water level measurements will be recorded automatically on a daily basis and downloaded during the regular semi-annual water level monitoring events.

The monitoring schedule for water quality testing performed under the BMC Groundwater Monitoring Program will be once per year in October (Fall), when groundwater levels are seasonally low and many water quality constituents are at their highest concentrations. Lower Aquifer seawater intrusion would typically be at a seasonal maximum in October, while nitrate concentrations in the First Water group would be close to average annual levels, based on past monitoring data. Lower Aquifer groundwater monitoring will also be performed in April (Spring) as a means of tracking seawater intrusion in greater detail. As previously mentioned, Fall water quality testing performed for the LOWRF Baseline Program (First Water and Upper Aquifer groups) may extend into November.

3. CONDUCT OF WORK

This Groundwater Monitoring Program Annual Report covers monitoring activities performed during the 2015 calendar year. While information from prior years is included in data presentation and interpretation, the conduct of work and detailed groundwater monitoring results are reported for 2015.

3.1 Services Provided

No monitoring services were performed directly for the BMC in 2015. All 2015 groundwater monitoring data compiled for this report comes from other monitoring programs, as follows:

- San Luis Obispo County Public Works, Semi-Annual Water Level Monitoring Program: water level data.
- Purveyor water supply well monitoring: water level, water quality and production data.
- Los Osos Water Recycling Facility (LOWRF) Baseline Groundwater Monitoring Program: water level and water quality data.
- Lower Aquifer Monitoring Program: water level, water quality, and geophysical data.

3.2 Field Methods

Groundwater level measurement and groundwater sampling are the primary field activities performed for the Groundwater Monitoring Program. Field methods include the procedures for measuring and recording water levels in wells and the procedures for collecting groundwater samples for laboratory analytical testing. The field methods approved for use in the Groundwater Monitoring Program are presented in Appendix B. These methods are recommended for services performed directly for the BMC and for other monitoring programs that contribute data to the Groundwater Monitoring Program.

3.2.1 Elevation Datum

The original survey for wells in the San Luis Obispo County Public Works Semi-Annual Water Level Monitoring Program was likely based on the National Geodetic Vertical Datum of 1929 (NGVD 29), which has been replaced in land surveying practice by the North American Vertical Datum of 1988 (NAVD 88). Several wells were re-surveyed in 2003 and 2005 using NAVG 88, but there are still wells with elevations based on NGVD 29, along with wells with no known elevation survey. For the 2015 Annual Report, wellhead elevations reported in tables are from the latest available survey or estimated from topographic maps (with datum given). For water level contouring and storage calculations, the NGVD 29 reference point elevation have been adjusted to

NAVD 88 datum using a 2.8 feet upward shift, based on North American Vertical Datum Conversion (VERTCON) data reviewed for the Los Osos area, as published by the National Geodetic Society. Mean sea level at Los Osos is approximately 2.8 feet elevation using NAVD 88.

3.2.2 Water Level Monitoring Procedures

Groundwater level monitoring typically uses an electric sounder or steel tape. If the well is equipped and active, monitoring would take place when the pump is off and the water level is relatively static. Some of the monitoring network wells will be equipped with a pressure transducer, allowing for automatic water level data collection between regular (manual) monitoring events. These devices are placed below water in a well and record changes in pressure that occur in response to changes in the height of the water column above the transducer. Detailed water level monitoring procedures and transducer information are included in Appendix B.

3.2.3 Groundwater Sampling Procedures

Groundwater sampling procedures facilitate obtaining a representative groundwater sample from an aquifer for water quality analysis. Unused or unequipped wells are purged of standing water prior to sampling. Stabilization of field measurements for conductivity, pH, and temperature, along with minimum purge volumes, are included in the approved methods. Active wells can be sampled with lower purging requirements. Sampling procedures for general mineral and nitrate sampling (with additional procedures for wastewater indicator compounds) are presented in Appendix B. The purpose of the procedures are to ensure that a representative sample of groundwater from the aquifer is obtained for water quality analysis.

3.3 Monitoring Staff Affiliations

As indicated above, no services were provided directly for the BMC in 2015. Monitoring services that contributed data to the 2015 Annual Report were performed by staff affiliated with the following agencies and consultants:

- San Luis Obispo County Public Works, Water Resources Division. Performed semi-annual water level monitoring, collected and maintained precipitation and stream gage records.
- Los Osos Water Purveyors (LOCSD, GSWC, S&T). Performed semi-annual water level monitoring and water quality sampling at community water supply wells.
- Cleath-Harris Geologists. Performed semi-annual water level monitoring, water quality sampling at private wells, monitoring wells, and community supply wells.

4. MONITORING RESULTS

The results of groundwater monitoring activities performed in 2015 for the various basin monitoring programs are summarized below. Overlap between the BMC Groundwater Monitoring Program and other basin monitoring programs are shown in Appendix A. Laboratory analytical reports of groundwater samples collected for LOWRF Baseline Monitoring are contained in their respective Spring and Fall 2015 monitoring program reports (Cleath-Harris Geologists, 2015a, 2015b). Laboratory analytical reports for 2015 Lower Aquifer Monitoring, which were not attached to their respective technical memorandums (Cleath-Harris Geologists 2015c, 2015d), are included in Appendix C.

4.1 Water Level Monitoring Results

Tables 3 through 8 present the results of water level monitoring for Groundwater Monitoring Program wells, as reported by the various monitoring programs. Water levels for private wells monitored under other programs are not reported herein, but have been used for aggregated water level contour maps. Several new wells have also added to the Groundwater Monitoring Program network to help improve the quality and consistency of basin water level contours, which are used for groundwater storage calculations.

Spring water levels were measured in April 2015 for the County Semi-Annual Water Level Monitoring Program and the Lower Aquifer Monitoring Program, and in May for the LOWRF Baseline Monitoring Program. Fall water levels were measured in October 2015 for the County Semi-Annual Water Level Monitoring Program and the Lower Aquifer Monitoring Program, and in November for the LOWRF Baseline Monitoring Program. Tables 3 through 8 present Spring and Fall 2015 water levels for First Water, Upper Aquifer, and Lower Aquifer groups.

	Table 3. Sp	oring 2015 Water	Levels - First	Water	
Well ID	State Well Number	R. P. Elevation and Datum	Date	Water l	Level (Feet)
	1,000	(feet)		Depth	Elevation
FW1		PRIVATE			
FW2	30S/10E-13L8	32.63 ¹	5/18/2015	23.82	8.8
FW3	30S/10E-13G	50.95 ¹	5/18/2015	41.84	9.1
FW4	30S/10E-13H	49.33 ¹	5/18/2015	31.29	18
FW5	30S/10E-13Q2	101.27 ¹	5/18/2015	86.67	14.6
FW6	30S/10E-24A	193.04 ¹	5/20/2015	160.11	32.9
FW7		PRIVATE			
FW8	30S/11E-7L4	45.76 ¹	5/13/2015	38.2	7.6
FW9	30S/11E-7K3	90.71 ¹	5/13/2015	54.42	36.3
FW10	30S/11E-7Q1	25.29 ¹	5/19/2015	9.2	16.1
FW11	30S/11E-7R2	61.93 ¹	5/12/2015	24.61	37.3
FW12	30S/11E-18C2	34.55 ¹	5/12/2015	20.2	14.4
FW13	30S/11E-18B2	79.89 ¹	5/12/2015	22.82	57.1
FW14		PRIVATE			
FW15	30S/11E-18N2	125.53 ¹	5/14/2015	81.25	44.3
FW16	30S/11E-18L12	103.85 ¹	5/14/2015	22.38	81.5
FW17	30S/11E-18L11	88.02 ¹	5/18/2015	46.51	41.5
FW18	30S/11E-18P	150 ²	no	ot measure	d
FW19	30S/11E-18J7	125.74 ¹	5/14/2015	26.45	99.3
FW20	30S/11E-8Mb	95 ²	no	t measure	d
FW21	30S/11E-8N4	95.99 ¹	5/14/2015	41.9	54.1
FW2	22 to FW28	PRIVATE			
FW29+		PRIVATE			
FW30+		PRIVATE			

NOTES: ¹ NAVD 88 elevation as reported by licensed land surveyor ² estimated elevation (NAVD 88)

⁺ indicates proposed addition to monitoring network

	Table 4. Spr	ing 2015 Water L	evels - Upper	Aquifer	
Well ID	State Well Number	R. P. Elevation and Datum	Date	Water 1	Level (Feet)
	Number	(feet)		Depth	Elevation
UA1	30S/10E-11A1	16.39 ¹	3/24/2015	14	2.4
UA2	30S/10E-14B1	16.83 ¹	3/25/2015	14.66	2.2
UA3	30S/10E-13F4	19 ²	4/13/2015	12	7
UA4	30S/10E-13L1	39 ²	4/21/2015	31	8
UA5	30S/11E-7N1	11 ²	5/14/2015	7.25	3.8
UA6	30S/11E-18L8	75.8 ³	4/15/2015	57.82	18
UA7	30S/11E-18L7	75.4 ³	4/15/2015	66.33	9.1
UA8	30S/11E-18K7	135.65 ³	4/15/2015	119.83	15.8
UA9	30S/11E-18K3	121.18 ³	4/20/2015	117	4.2
UA10	30S/11E-18H1	107.1 ³	no	ot measure	d
UA11		PRIVATE			
UA12	30S/11E-17E9	105.85 ³	5/13/2015	94.12	11.7
UA13	30S/11E-17E10	106 ²	no	ot measure	d
UA14		PRIVATE			
UA15		PRIVATE			
UA16+		PRIVATE			
UA17+		PRIVATE			
UA18+	1	PRIVATE			

NOTES: ¹ NAVD 88 elevation as reported by licensed land surveyor

² estimated elevation (assume NAVD 88)

³ elevation as reported by County records (datum unknown - likely NGVD 29)

⁺ indicates proposed addition to monitoring network

	Table 5.	Spring 2015 Water I	Levels - Lower A	quifer	
Well ID	State Well Number	R. P. Elevation and Datum	Date	Water Le	evel (Feet)
	rumber	(feet)		Depth	Elevation
LA1	30S/10E-2A1	15.83 ¹	3/24/2015	8.68	7.2
LA2	30S/10E-11A2	16.39 ¹	3/24/2015	12	4.4
LA3	30S/10E-14B2	16.83 ¹	3/25/2015	13.82	3
LA4	30S/10E-13M1	41.2 ³	4/21/2015	45.32	-4.1
LA5	30S/10E-13L7	37 ²	4/23/2015	33	4
LA6	30S/10E-13L4	68 ²	4/13/2015	63.7	4.3
LA7		PRIVATE			
LA8	30S/10E-13N	138.5 ²	4/23/2015	133	5.5
LA9	30S/10E-24C1	178.32 ³	4/14/2015	176	2.3
LA10	30S/10E-13J4	95.31 ³	4/2/2015	98	-2.7
LA11	30S/10E-12J1	8.43 ¹	4/15/2015	6.32	2.1
LA12	30S/11E-7Q3	24.3 ³	4/14/2015	36.7	-12.4
LA13	30S/11E-18F2	100 ³	4/19/2015	105.5	-5.5
LA14	30S/11E-18L6	78.08 ³	4/15/2015	80.78	-2.7
LA15	30S/11E-18L2	85 ²	4/14/2015	92.55	-7.6
LA16	30S/11E-18M1	106.82 ³	4/15/2015	102.18	-4.6
LA17	30S/11E-24A2	210.4 ³	not	measured	
LA18	30S/11E-18K8	135.74 ³	4/21/2015	146.1	-10.4
LA19	30S/11E-19H2	256.2 ³	4/15/2015	275.02	-18.8
LA20	30S/11E-17N10	140 ²	4/23/2015	144	-4
LA21	30S/11E-17E7	105.85 ³	4/21/2015	115.54	-9.7
LA22	30S/11E-17E8	105.85 ³	4/21/2015	124.62	-18.8
LA23 to L	A30	PRIVATE			
LA31+	30S/11E-8F	26.15 ¹	4/20/2015	7	19.2
LA32+		PRIVATE			

NOTES: ¹ NAVD 88 elevation as reported by licensed land surveyor ² estimated elevation (assume NAVD 88)

³ elevation as reported by County records (datum unknown - Likely NGVD 29) + indicates proposed addition to monitoring network

	Table 6.	Fall 2015 Water I	Levels - First	Water	
Well ID	State Well Number	R. P. Elevation and Datum	Date	Water L	Level (Feet)
	110111001	(feet)		Depth	Elevation
FW1		PRIVATE			
FW2	30S/10E-13L8	32.63 ¹	11/2/2015	23.71	8.9
FW3	30S/10E-13G	50.95 ¹	11/2/2015	42.06	8.9
FW4	30S/10E-13H	49.33 ¹	11/5/2015	32.32	17
FW5	30S/10E-13Q2	101.27 ¹	11/4/2015	86.83	14.4
FW6	30S/10E-24A	193.04 ¹	11/5/2015	160.91	32.1
FW7		PRIVATE			
FW8	30S/11E-7L4	45.76 ¹	11/3/2015	38.3	7.5
FW9	30S/11E-7K3	90.71 ¹	11/3/2015	54.9	35.8
FW10	30S/11E-7Q1	25.29 ¹	11/9/2015	9.51	15.8
FW11	30S/11E-7R2	61.93 ¹	11/3/2015	25.34	36.6
FW12	30S/11E-18C2	34.55 ¹	11/2/2015	20.56	14
FW13	30S/11E-18B2	79.89 ¹	11/3/2015	23.73	56.2
FW14		PRIVATE			
FW15	30S/11E-18N2	125.53 ¹	11/4/2015	82.51	43
FW16	30S/11E-18L12	103.85 ¹	11/2/2015	23.26	80.6
FW17	30S/11E-18L11	88.02 ¹	11/2/2015	46.65	41.4
FW18	30S/11E-18P	150 ²	no	ot measured	d
FW19	30S/11E-18J7	125.74 ¹	11/5/2015	27.44	98.3
FW20	30S/11E-8Mb	95 ²	no	ot measured	d
FW21	30S/11E-8N4	95.99 ¹	11/3/2015	42.24	53.8
FW22 to F\	N28	PRIVATE			
FW29+		PRIVATE			
FW30+		PRIVATE			

NOTES: ¹ NAVD 88 elevation as reported by licensed land surveyor
² estimated elevation (NAVD 88)
³ elevation as reported by County records (datum unknown - Likely NGVD 29)

⁺ indicates proposed addition to monitoring network

	Table 7. Fa	ıll 2015 Water Le	vels - Upper A	Aquifer	
Well ID	State Well Number	R. P. Elevation and Datum	Date	Water I	Level (Feet)
	rumber	(feet)		Depth	Elevation
UA1	30S/10E-11A1	16.39 ¹	10/21/2015	11.82	4.6
UA2	30S/10E-14B1	16.83 ¹	10/21/2015	12.68	4.2
UA3	30S/10E-13F4	19 ²	10/19/2015	10	9
UA4	30S/10E-13L1	39 ²	nc	t measure	d
UA5	30S/11E-7N1	11 ²	11/10/2015	6.2	4.8
UA6	30S/11E-18L8	75.8 ³	10/26/2015	58.73	17.1
UA7	30S/11E-18L7	75.4 ³	10/26/2015	66.98	8.4
UA8	30S/11E-18K7	135.65 ³	10/27/2015	120.6	15.1
UA9	30S/11E-18K3	121.18 ³	10/19/2015	121	0.2
UA10	30S/11E-18H1	107.1 ³	nc	t measure	d
UA11		PRIVATE			
UA12	30S/11E-17E9	105.85 ³	11/5/2015	93.84	12
UA13	30S/11E-17E10	106 ²	nc	t measure	d
UA14		PRIVATE			
UA15		PRIVATE			
UA16+		PRIVATE			
UA17+		PRIVATE			
UA18+		PRIVATE			

NOTES: ¹ NAVD 88 elevation as reported by licensed land surveyor

² estimated elevation (NAVD 88)

³ elevation as reported by County records (datum unknown - Likely NGVD 29)

⁺ indicates proposed addition to monitoring network

	Table 8	. Fall 2015 Water Level	ls - Lower Aqu	ifer	
Well ID	State Well Number	R. P. Elevation and Datum (feet)	Date	Water L	evel (Feet) Elevation
LA1	30S/10E-2A1	15.83 ¹	10/21/2015	8.45	7.4
LA2	30S/10E-11A2	16.39 ¹	10/21/2015	10.33	6.1
LA3	30S/10E-14B2	16.83 ¹	10/21/2015	13.59	3.2
LA4	30S/10E-13M1	41.2 ³	10/24/2015	44.84	-3.6
LA5	30S/10E-13L7	37 ²		measured	3.0
LA6	30S/10E-13L4	68 ²		measured	
LA7		PRIVATE			
LA8	30S/10E-13N	138.5 ²	10/6/2015	134	4.5
LA9	30S/10E-24C1	178.32 ³	10/19/2015	175	3.3
LA10	30S/10E-13J4	95.31 ³	10/19/2015	102	-6.7
LA11	30S/10E-12J1	8.43 ¹	10/26/2015	5.22	3.2
LA12	30S/11E-7Q3	24.3 ³	10/15/2015	34.9	-10.6
LA13	30S/11E-18F2	100 ³	not i	measured	
LA14	30S/11E-18L6	78.08 ³	10/26/2015	83.6	-5.5
LA15	30S/11E-18L2	85 ²	10/15/2015	96	-11
LA16	30S/11E-18M1	106.82 ³	10/27/2015	102.2	-4.6
LA17	30S/11E-24A2	210.4 ³	not	measured	
LA18	30S/11E-18K8	135.74 ³	10/19/2015	141.27	-5.5
LA19	30S/11E-19H2	256.2 ³	10/27/2015	275.85	-19.7
LA20	30S/11E-17N10	140 ²	10/19/2015	154	-14
LA21	30S/11E-17E7	105.85 ³	10/27/2015	118.51	-12.7
LA22	30S/11E-17E8	105.85 ³	10/1/2015	129.19	-23.3
LA23 to L	A30	PRIVATE			
LA31+	30S/11E-8F	26.15 ¹	10/19/2015	9.45	16.7
LA32+	NOTE 1 NAVE OF	PRIVATE			

NOTEs: ¹ NAVD 88 elevation as reported by licensed land surveyor
² estimated elevation (NAVD 88)
³ elevation as reported by County records (datum unknown - likely NGVD 29)
+ indicates proposed addition to monitoring network

4.2 Water Quality Results

Available Fall 2015 water quality results for First Water and Upper Aquifer monitoring wells designated for water quality reporting in the Groundwater Monitoring Program are presented in Table 9. The Groundwater Monitoring Program does not include Spring water quality monitoring at First Water or Upper Aquifer Wells, although this information is collected by the County's Baseline Monitoring Program. Available Spring and Fall 2015 water quality for Lower Aquifer monitoring wells designated for water quality reporting in the Groundwater Monitoring Program are presented in Tables 10 and 11.

Available results for First Water wells indicate elevated nitrate concentrations across much of the urban area. A more extensive compilation of shallow water quality, including nitrate and total dissolved solids concentration maps, are presented for Spring and Fall 2015 in the San Luis Obispo County Baseline Monitoring Program reports (CHG, 2015a, 2015b). The BMC Groundwater Monitoring Program uses a Nitrate Metric to evaluate trends in nitrate concentrations (Section 7.5.2). Upper Aquifer wells in the BMC Groundwater Monitoring Program will be sampled for water quality in Fall 2016.

Some of the constituents of analysis that are part of the BMC Groundwater Monitoring Program listed in Table 1 are not included in the Baseline Monitoring Program. CHG recommends adding the missing constituents to the Fall 2016 monitoring event for wells that are part of both programs.

Lower Aquifer water quality results for 2015 show two wells (LA10 and LA33) impacted by seawater intrusion, based on chloride concentrations over 250 mg/l. The overall trend in chloride concentration and seawater intrusion is tracked using the Chloride Metric (Section 7.5.2).

	Table 9. Fall 2015 Water Quality Results - First Water and Upper Aquifer																
Basin			EC	рН	TDS		Alkalin	ity	Cl	NO3-N	SO4	В	Ca	Ma	K	Na	Т
Plan	State Well Number	Date	EC	(field)	נענו	CO3	НСО3	CaCO3	Cl	NO3-N	304	D	Ca	Mg	K	INa	1
Well	1 (0/11001		μs/cm	pH units						mg/L							°F
FW2	10S/30E-13L8	2-Nov		6.32	520			1	107	27.8	20	0.1				122	65.3
FW6	30S/10E-24A	5-Nov		6.64	430			1	140	18.6	7	<0.1				43	61.5
FW10	30S/11E-7Q1	9-Nov		6.70	490				119	23.4	45	0.3				79	63.9
FW15	30S/11E-18N2	4-Nov		6.32	410				86	24.8	42	0.2				59	66.2
FW17	30S/11E-18L12	2-Nov		7.00	280				77	7.9	18	0.1				35	64.9
FW20	30S/11E-8M	(DRY)															
FW22								PRIVATE									
FW26								PRIVATE									
FW28	PRIVATE																
UA3	30S/10E-13F1																
UA9	30S/11E-18K3																
UA13	30S/11E-17E10																

NOTES: "--" = no result available; EC = Electrical conductivity; TDS = total dissolved solids; CO3 = carbonate; HCO3= bicarbonate; CaCO3 = Total alkalinity as calcium carbonate; Cl = chloride; NO3-N = nitrate as nitrogen; SO4 = Sulfate; B = boron; Ca = calcium; Mg = magnesium; K = potassium; Na = sodium; T = Temperature; μS/cm = microsiemens per centimeter; mg/L = milligrams per liter; °F = degrees Fahrenheit

Table 10. Available Spring 2015 Water Quality Results - Lower Aquifer																	
			EC	all (field)	TDS		Alkalin	ity	Cl	NO3-N	SO4	В	Ca	Ma	K	Na	Т
Basin Plan Well	State Well Number	Date	EC	pH (field)	IDS	CO3	НСО3	CaCO3	CI	NO3-N	304	Б	Ca	Mg	V	Na	1
,, 622			μs/cm	pH units						mg/L							°F
LA8	30S/10E-13N	21-Apr	445		280	<10	50	40	77	7.7	11	<0.1	16	14	2	38	65.4
LA9	30S/10E24C1	22-Apr	530		320	<10	70	60	95	5.5	16	<0.1	19	17	2	45	
LA10	30S/10E-13J4	22-Apr	1230		750	<10	80	70	331	1.9	20	<0.1	69	63	2	39	
LA11	30S/10E-12J1	22-Apr	1290	7.23	810	<10	360	300	112	<0.2	189	0.3	65	76	5	88	68.9
LA12	30S10E-7Q3	21-Apr	897		500	<10	290	240	101	<0.2	55	<0.1	48	45	2	59	73.5
LA15	30S/11E-18L2	29-Apr	348		230	<10	80	60	43	5.0	10	<0.1	13	11	0	30	65.1
LA18	30S/11E-18K8	21-Apr	634	7.26	400	<10	290	240	33	<0.2	39	<0.1	55	31	2	27	73.2
LA20	30S/11E-17N10	22-Apr	653		360	<10	290	240	43	0.6	27	<0.1	36	35	2	42	
LA22	30S/11E-17E8	21-Apr	481	7.08	270	<10	150	120	49	7.1	13	<0.1	25	23	1	28	67.8
LA23	PRIVATE																
LA28	PRIVATE																
LA33+	30S/10E-13M2	21-Apr	3430		1930	<10	60	50	950	0.6	178	0.2	117	113	5	382	64.7
LA34+	30S/11E-18K9	21-Apr	504		270	<10	190	160	38	1.6	20	<0.1	17	16	1	27	68.8

NOTES: "--" = no result available; EC = Electrical conductivity; TDS = total dissolved solids; CO3 = carbonate; HCO3= bicarbonate; CaCO3 = Total alkalinity as calcium carbonate; Cl = chloride; NO3-N = nitrate as nitrogen; SO4 = Sulfate; B = boron; Ca = calcium; Mg = magnesium; K = potassium; Na = sodium; T = Temperature; μS/cm = microsiemens per centimeter; mg/L = milligrams per liter; °F = degrees Fahrenheit; + indicates proposed addition to monitoring program.

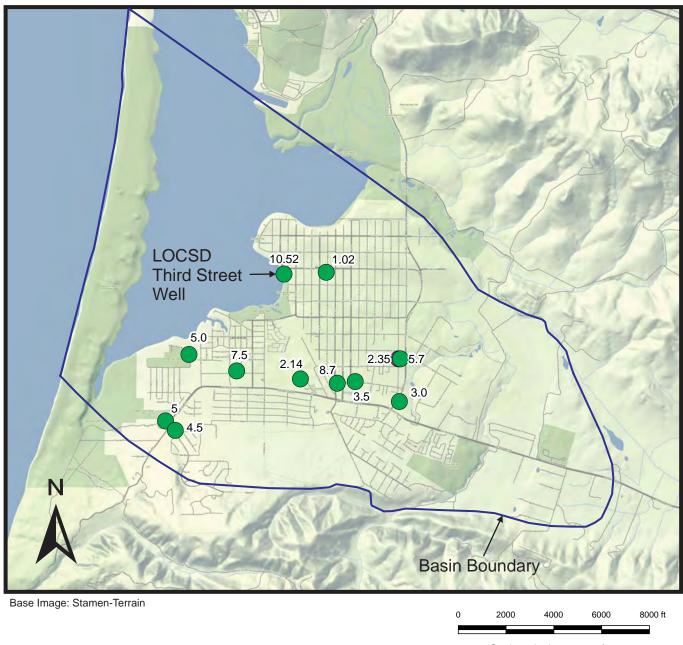
	Table 11. Available Fall 2015 Water Quality Results - Lower Aquifer Group																
Basin			EC	рН	TDC	A	Alkalinit	у	CI	NO2 N	504	D	C-	Μ.	V	NT.	T
Plan	State Well Number	Date	EC	(field)	TDS	CO3	HCO3	Total	Cl	NO3-N	SO4	В	Ca	Mg	K	Na	T
Well	rvanioci		μs/cm	pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	°F
LA2	30S/10E-11A2	21-Oct	17700	7.44	13100		150		6300	<0.1	740		1030	990	31	1560	67.1
LA3	30S/10E-14B2	21-Oct	29500	11.55	24700				10000	<0.1	530		2830	20	80	4040	73.8
LA8	30S/10E-13N	6-Oct	422	8.12	310	<10	40		75		10	<0.1	16	14	1	38	65.5
LA9	30S/10E-24C1	5-Oct	349		270	<10	50		50		7	<0.1	12	11	1	34	
LA10	30S/10E-13J4	5-Oct	1280		950	<10	70		329		19	<0.1	74	67	2	41	
LA11	30S/10E-12J1	1-Oct	1280	7.38	840	<10	250	200	117	<0.1	188	0.3	68	77	4	85	70.2
LA12	30S10E-7Q3	6-Oct	828	7.52	490	<10	280		91	<0.1	46	<0.1	47	44	2	55	70
LA15	30S/11E-18L2	28-Oct	782	7.65	420	<10	230		104		29	<0.1	46	42	<1	30	68.2
LA18	30S/11E-18K8	19-Oct	621	7.39	370	<10	230		29	<0.1	33	<0.1	53	30	2	26	74.5
LA20	30S/11E-17N10	5-Oct	614		370	<10	280		38		23	<0.1	35	34	2	41	
LA22	30S/11E-17E8	1-Oct	475	7.27	290	<10	120	100	44	6.6	10	<0.1	26	24	1	28	68
LA23								PRIVATE									
LA28	PRIVATE																
LA33+	30S/10E-13M2	6-Oct	3370	7.64	2140	<10	30		960		185	0	115	114	5	342	66.6
LA34+	30S/11E-18E9	6-Oct	248	7.49	190	<10	50		31		3	<0.1	10	9	<1	21	72

NOTES: "--" = no result available; EC = Electrical conductivity; TDS = total dissolved solids; CO3 = carbonate; HCO3= bicarbonate; CaCO3 = Total alkalinity as calcium carbonate; Cl = chloride; NO3-N = nitrate as nitrogen; SO4 = Sulfate; B = boron; Ca = calcium; Mg = magnesium; K = potassium; Na = sodium; T = Temperature; μS/cm = microsiemens per centimeter; mg/L = milligrams per liter; °F = degrees Fahrenheit; + indicates proposed addition to monitoring program.

Between August 2014 and December 2015, Hexavalent chromium was detected in groundwater at concentrations slightly over the Maximum Contaminant level of 10 µg/L at one of the community drinking water supply wells. Chromite (iron chromium oxide ore) deposits are naturally occurring in San Luis Obispo County, and are associated with serpentinite bodies. Other sources of chromium in groundwater are associated with contamination from industrial activities such as metal plating and leather tanning, and from paints, dyes, and wood preservatives. There are no known sources of industrial chromium contamination near the Third Street well. Hexavalent chromium concentrations have been detected in groundwater at low levels across the urban area, in both upper and lower aquifer wells, indicating a natural source is present. Figure 6 shows locations and concentrations of hexavalent chromium in groundwater from samples collected in 2014 and 2015.

4.3 Geophysics

Induction and natural gamma logs were performed at deep monitoring well LA4 (30S/10E-13M1) and LA14 (30S/11E-18L6) in October 2015. The log at well LA4 indicates the top of seawater in Zone D has declined approximately 15 feet from a high in 2009 (Appendix D). A drop in the seawater elevation in Zone D is consistent with a general reduction in west side lower aquifer pumping since 2009.


Geophysics at deep monitoring well LA14 continues to show no indication of intrusion, despite documented intrusion in Zone E at the nearby LOCSD Palisades well (LA15), approximately 500 feet to the south. This is interpreted as an indication that historical Zone E intrusion toward the Palisades well was through a relatively narrow preferential pathway. Production from Zone E at the Palisades well was permanently eliminated through well modification in 2013.

5. GROUNDWATER PRODUCTION

Annual basin groundwater production between 1970 and 2013 was reported in the Basin Plan. Production for 2014 and 2015 is estimated at 2,170 acre-feet, continuing a trend of declining water demand since 2007. The data has been compiled by both user type and basin aquifer/area. Tables 12 and 13 present municipal and basin production for calendar year 2014 and 2015.

Table	e 12. Municipal	Groundwater Pr	oduction (2014-	2015)
Year	LOCSD	GSWC	S&T	Total
rear		Acre-F	eet	
2014	630	560	50	1,240
2015	510	470	30	1,010

Note: All figures rounded to the nearest 10 acre-feet

Explanation

5

Groundwater with Hexavalent Chromium concentration in micrograms per liter (µg/L). Maximum Contaminant Level = 10 µg/L

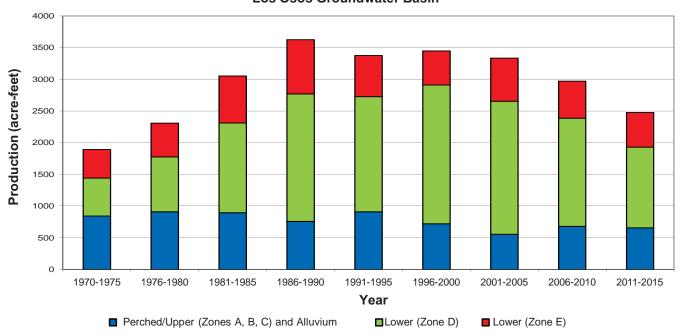
Scale: 1 inch ≈ 4,000 feet

Figure 6 Hexavalent Chromium Concentrations in Groundwater (2014-2015) Los Osos Groundwater Basin 2015 Annual Report

Table 13. Basin Groundwater Production (2014-2015)							
Year	Purveyors	Domestic	Community	Agriculture	Total		
	Acre-Feet						
2014	1,240	220	140	800	2,400		
2015	1,010	220	140	800	2,170		

Note: All figures rounded to the nearest 10 acre-feet

Figure 7 shows the historical pumping distribution between basin aquifers since 1970, along with the pumping distribution in the Western Area. Figure 8 show the historical pumping distribution for the Central and Eastern areas. There has been a 30 percent reduction in basin production over the last 10 years, with current production similar to the values reported for the late 1970s. The largest reduction in pumping has occurred in the Lower Aquifer Western Area (Figure 7).


Land use and water use areas overlying the basin, including purveyor service areas, agricultural parcels, private domestic parcels, and community facilities are included in Appendix E. Purveyor municipal production data for 2014 and 2015 are based on meter readings, while agricultural, private domestic, and community water production estimates are based on the last reported water use estimates from the Basin Plan (2013) with minor adjustments from aerial photo review. These adjustments include 20 acre-feet per year increased private domestic water use, based on adding 19 residences not previously included in estimates. Agricultural water use was increased by 50 acre-feet per year, based on adding 10 acres of peas, 15 acres of truck crops, and 1 acre of pasture not previously included in estimates. Prior estimates for private domestic and agricultural water use are detailed in technical memorandums (CHG, 2009a, 2009b).

6. PRECIPITATION AND STREAMFLOW

Precipitation data is currently available from a County gage located at the former Los Osos landfill (Station #727). Precipitation records for Station #727 began in July 2005, and have averaged 14.7 inches, with a minimum of 6.81 inches in the 2014 rainfall year and a maximum of 31.77 inches in the 2011 rainfall year. Precipitation for the 2015 rainfall year was reported at 7.68 inches. Records for Station #727 through the calendar year 2015 are included in Appendix F. The average rainfall at Station #727 is lower than other local rain gages due to a short period of record that includes six drought years.

Historically, precipitation records at rain gage stations were compiled by San Luis Obispo County for the LOCSD maintenance yard on 8th Street (Station #177), at the South Bay fire station on 9th Street (Station #197), and at two private volunteer stations (Station #144.1 in the Los Osos Creek Valley and Station #201.1 on Broderson Avenue). The longest active period of record in the vicinity is at the Morro Bay fire department (Station #152). A summary of precipitation data for these stations is presented in Table 14. Figure 9 shows the long term cumulative departure from mean precipitation at Station #152. Once data for Los Osos Landfill Station #727 becomes representative of long-term climatic conditions, it would be appropriate to use the gage in the cumulative departure from mean precipitation graph.

BASIN TOTAL 1970-2015 Groundwater Production Los Osos Groundwater Basin

WESTERN AREA 1970-2015 Groundwater Production Los Osos Groundwater Basin

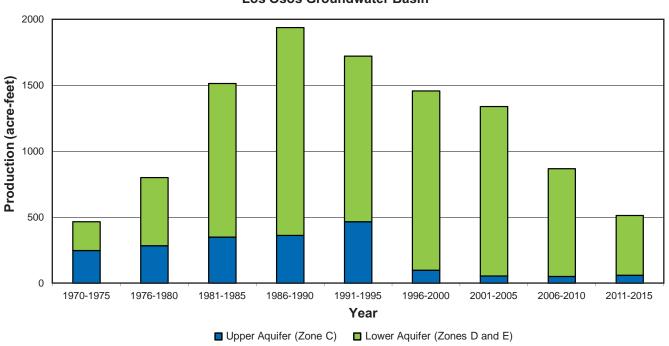
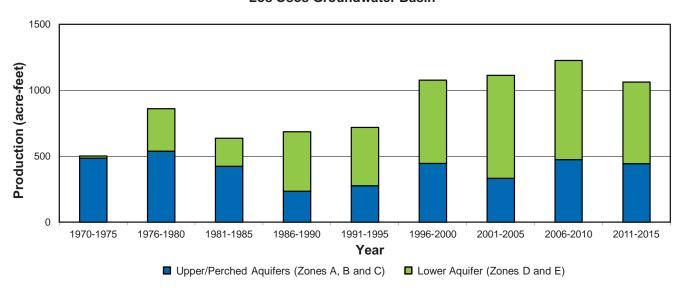



Figure 7
Basin Production 1970-2015
Basin Total and Western Area
Los Osos Goundwater Basin
2015 Annual Report

CENTRAL AREA 1970-2015 Groundwater Production Los Osos Groundwater Basin

EASTERN AREA 1970-2015 Groundwater Production Los Osos Groundwater Basin

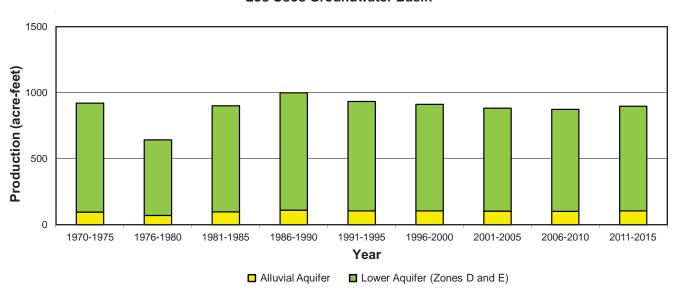


Figure 8
Basin Production 1970-2015
Central and Eastern Areas
Los Osos Groundwater Basin
2015 Annual Report

Cumulative Departure from Mean Rainfall Morro Bay Fire Department 1959-2015

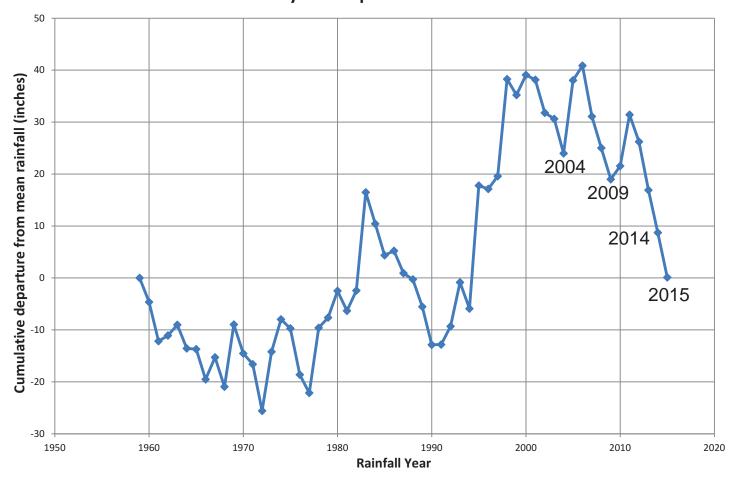


Figure 9 Cumulative Departure from Mean Rainfall at Morro Bay Los Osos Groundwater Basin 2015 Annual Report

Table 14. Active and Former Precipitation Stations					
Station	Name	Period of Record (rainfall years)	Average Annual Precipitation (inches)		
Station #144.1	Bender	1955-1987	19.17		
Station #152	Morro Bay Fire	1959-2015 (active)	16.14		
Station #177	CSA9 Baywood Park	1967-1980	17.49		
Station #197	South Bay Fire	1975-2001	19.52		
Station #201.1	Simas	1976-1983	21.16		
Station #727	Los Osos Landfill	2006-2015 (active)	14.67*		

NOTE: *lower average due to short period of record that includes six drought years.

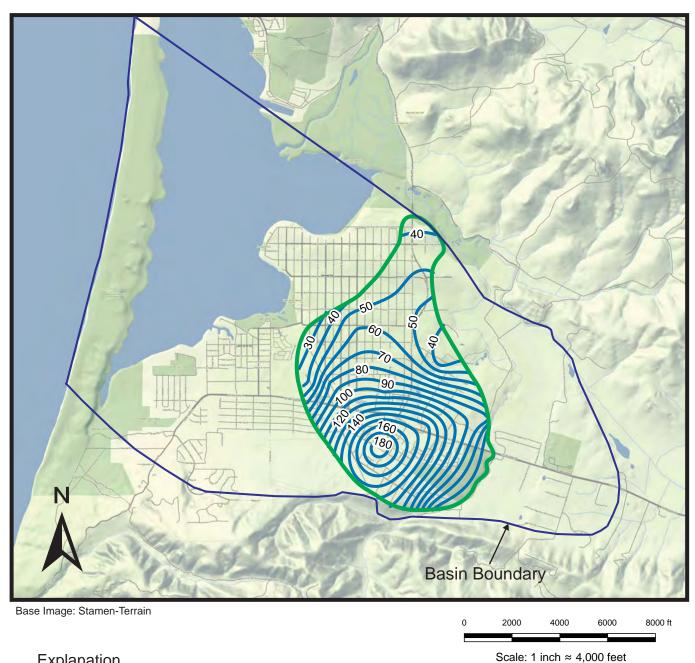
Los Osos Creek drains the Clark Valley watershed. Streamflow on Los Osos Creek is monitored by a County gage (formerly Gage #6, now Sensor 751) at the Los Osos Valley Road bridge. The location has been gaged intermittently since 1976, with 18 years of flow records through 2001. The average measured flow on Los Osos Creek at the gage (drainage area of 7.6 square miles) was 3,769 acre-feet per year between 1976 and 2001 (San Luis Obispo County, 2005). A summary of the available annual streamflow data is in Appendix F.

Streamflow was recorded at the gage on eight days during the 2015 water year (October 1, 2014 through September 30, 2015). The dates, maximum stage, and corresponding daily precipitation value from Station #727 are listed below in Table 15.

Table 15. Maximum Stream Stage for Los Osos Creek, 2015 Water Year						
Date	Maximum Stream Stage County Sensor 751 (feet)	Daily Precipitation County Station #727 (inches)				
12/11/14	2.25	1.22				
12/12/14	0.69	1.22				
12/15/14	0.40	0.71				
12/16/14	2.68	0.71				
12/17/14	2.24	0.08				
3/1/15	2.60	0.43				
7/19/15	2.54	1.69				
7/20/15	2.36	0.24				

There is no current rating curve for Sensor 751. A rating curve is needed to correlate stage records to flow records, therefore, no streamflow volumes are reported. Development of a rating curve for Sensor 751 is recommended.

Warden Creek drains approximately 9 square miles of the eastern Los Osos Valley. This creek flows along 3,700 feet of the northern basin boundary, at low invert elevations (less than 20 feet above sea level) in an area underlain by shallow bedrock. The U.S. Geological Survey reported winter flows in Warden Creek similar to Los Osos Creek, but with larger baseflow during the summer, because Warden Creek serves as a drain for shallow groundwater at the north end of the Los Osos Creek floodplain (Yates and Wiese, 1988).

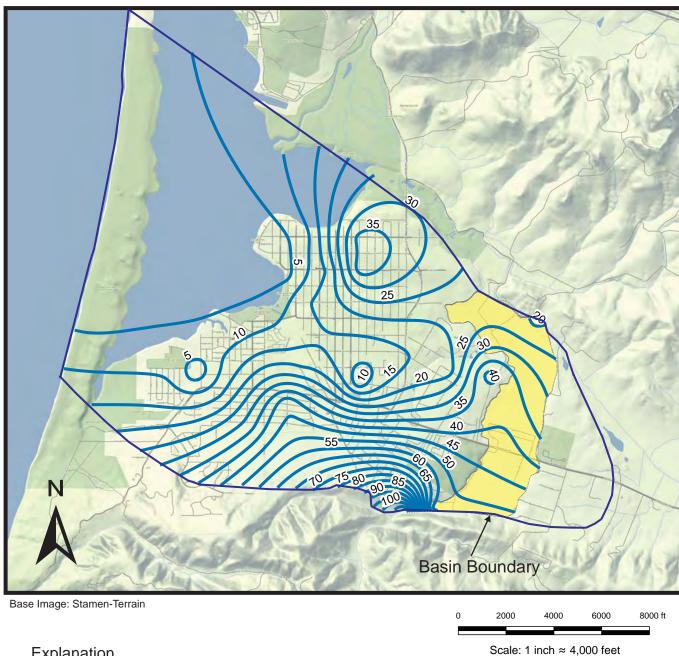

7. DATA INTERPRETATION

Groundwater level and water quality data for 2015 have been used to develop the following information:

- Water level contour maps for the Perched Aquifer, Upper Aquifer (with Alluvial Aquifer), and Lower Aquifer for both Spring and Fall 2015 conditions.
- Water level hydrographs for representative Western Area, Central Area, and Eastern Area wells.
- Groundwater in storage for Spring and Fall 2015, including portion above mean sea level.
- Groundwater in Storage for Spring 2005, for comparison to Spring 2015, including the volume of seawater intrusion.
- Basin Yield Metric, Basin Development Metric, Chloride Metric, Water Level Metric, and Nitrate Metric.

7.1 Water Level Contour Maps

Water level contour maps for Spring 2015 are presented in Figures 10, 11, and 12 for the Perched Aquifer, the Upper Aquifer with Alluvial Aquifer, and the Lower Aquifer, respectively. Corresponding water level contour maps for Fall 2015 are presented in Figures 13, 14, and 15. Water level data available from private wells were used for the water level contour maps, although the individual private well water levels are not listed in the data tables. In order to develop contour maps useful for groundwater storage estimates, a few wells located along the basin boundaries were added to the monitoring network, along with additional control points in the perched and upper aquifers. Three water levels included in the contour maps were not from 2015, but are needed for storage calculations. All groundwater elevations were adjusted to a common datum (NAVD 88) prior to contouring and groundwater storage calculations. These adjustments are approximate, pending a review of all reference point elevations by a licensed land surveyor.

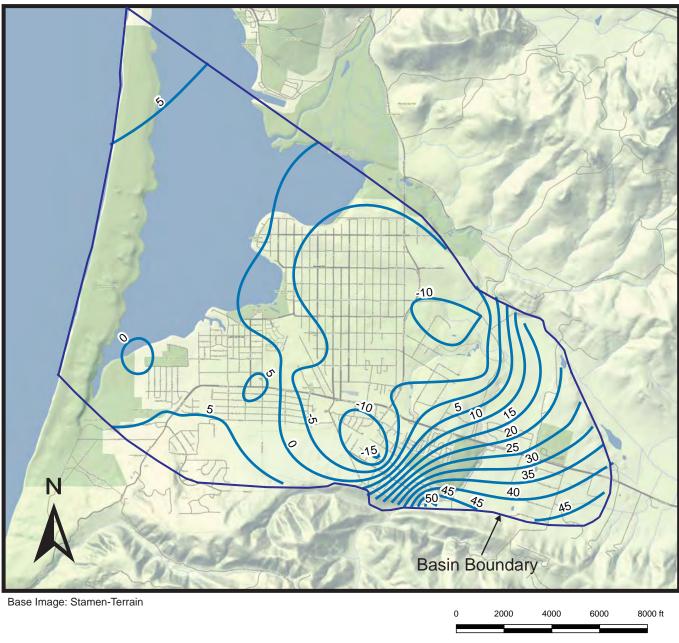


Explanation

Groundwater elevation contour in feet above sea level (NAVD 88 datum)

Approximate limits of Perched Aquifer

Figure 10 Spring 2015 Water Level Contours Perched Aquifer Los Osos Groundwater Basin 2015 Annual Report

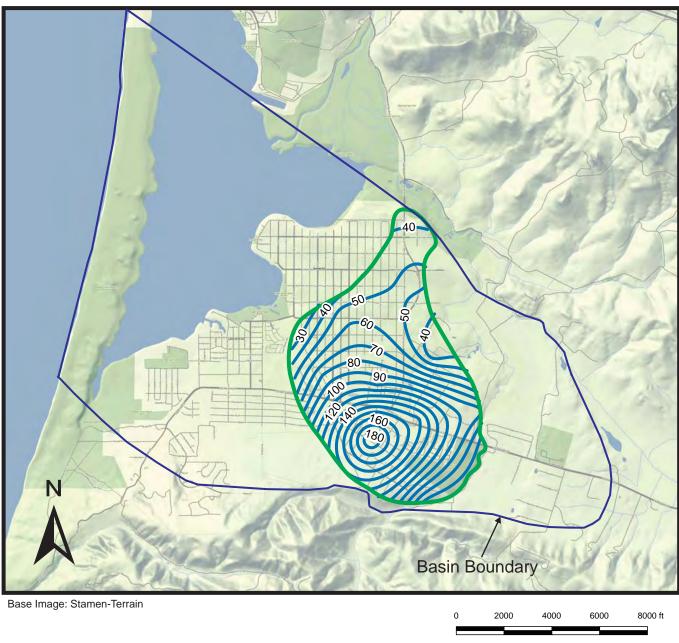


Explanation

Groundwater elevation contour in feet above sea level (NAVD 88 datum)

Limits of Alluvial Aquifer

Figure 11 Spring 2015 Water Level Contours Upper Aquifer and Alluvial Aquifer Los Osos Groundwater Basin 2015 Annual Report

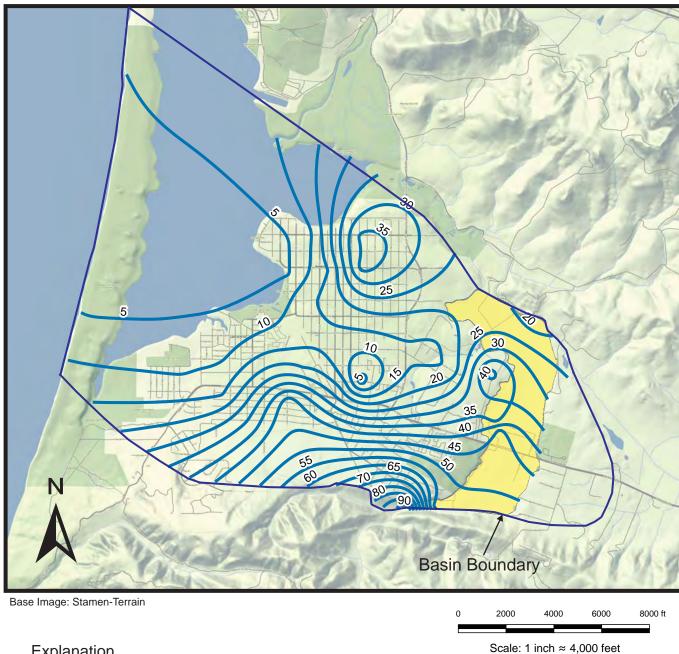

Explanation

Groundwater elevation contour in feet above sea level (NAVD 88 datum)

Scale: 1 inch ≈ 4,000 feet

Figure 12 Spring 2015 Water Level Contours Lower Aquifer Los Osos Groundwater Basin 2015 Annual Report

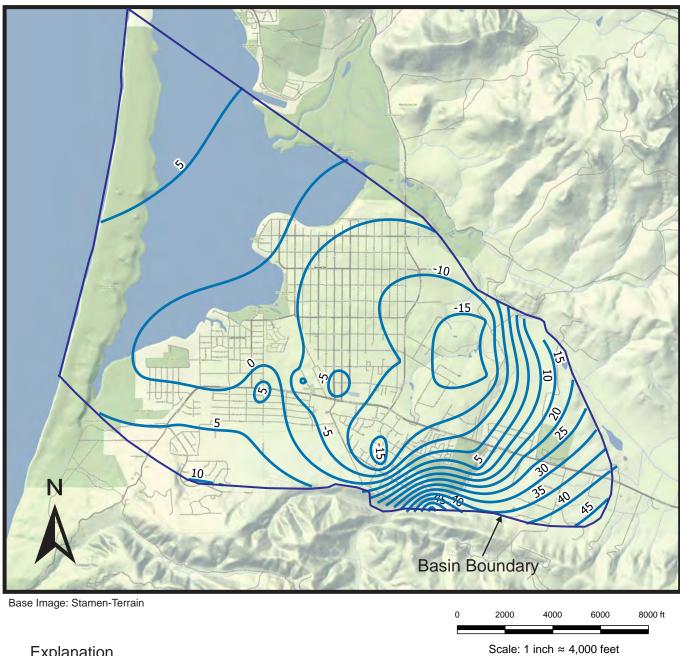
Scale: 1 inch ≈ 4,000 feet


Explanation

Groundwater elevation contour in feet above sea level (NAVD 88 datum)

Approximate limits of Perched Aquifer

Figure 13 Fall 2015 Water Level Contours Perched Aquifer Los Osos Groundwater Basin 2015 Annual Report



Explanation

Groundwater elevation contour in feet above sea level (NAVD 88 datum)

Limits of Alluvial Aquifer

Figure 14 Fall 2015 Water Level Contours Upper Aquifer and Alluvial Aquifer Los Osos Groundwater Basin 2015 Annual Report

Explanation

Groundwater elevation contour in feet above sea level (NAVD 88 datum)

> Figure 15 Fall 2015 Water Level Contours Lower Aquifer Los Osos Groundwater Basin 2015 Annual Report

7.2 Water Level Hydrographs

Water levels hydrographs for representative First Water, Upper Aquifer, and Lower Aquifer wells have been compiled for the Western and Central basin areas, including one of the Lower Aquifer wells in the Dunes and Bay area. Eastern area water level hydrographs may be presented in future annual reports, pending private well owner agreements. The hydrographs are shown in Figures 16, 17, and 18, respectively.

Water level trends over the last 10 years, based on the Western and Central area wells shown in hydrographs, average 0.7 feet of decline per year in First Water, 0.5 feet of decline per year in the Upper Aquifer, and 0.9 feet of rise in Lower Aquifer water levels between Spring 2005 and Spring 2015. The declining water levels in First Water and Upper Aquifer wells are interpreted to be in response to over 30 inches of decline in the cumulative departure from mean precipitation curve between 2005 and 2015 (Figure 9) along with a decline in return flow from irrigation. The rising water levels in Lower Aquifer wells are interpreted to be in response to over 40 percent of decline in Lower Aquifer production in the Western and Central areas between 2005 and 2015.

Upper aquifer water levels at the bay front remain slightly above 5 feet elevation (NAVD 88), which is the average upper aquifer hydrostatic pressure required by the Ghyben-Herzberg relation to avoid seawater intrusion. Continued water level declines may drive pressures lower, however, and a Water Level Metric for the Upper Aquifer may be appropriate, pending review and survey (as needed) of wellhead elevations by a licensed land surveyor.

7.3 Seawater Intrusion

Methodology to track the position of the seawater intrusion front was developed in the 2005 seawater intrusion study (Cleath & Associates, 2005). Information from water quality data and geophysical log interpretation were used to position the leading edge (toe) of the 250 mg/l chloride intrusion front, including the approximate slope of the intrusion front in cross-section. In subsequent seawater intrusion monitoring reports (CHG 2010; 2014; 2015c; 2015d) the leading edge of the intrusion front was interpreted using the same slope developed in the 2005 study.

For the 2015 Annual Report, CHG has revised and simplified the methodology for tracking the seawater intrusion front. The revised methodology contours lower aquifer chloride concentrations directly to establish a vertical front, rather than the leading edge of a sloped front. Six wells are used for developing the 250 mg/l chloride isopleth: LA8, LA10, LA11, LA12, LA15, and LA32.

The position of the Fall 2015 seawater intrusion front is shown in Figure 19, along with the 2005 seawater intrusion front, using the same methodology. The resulting inland advance of the intrusion front, based on using the revised methodology, is up to approximately 190 feet per year between 2005 and 2015. The location of the intrusion front is also shown in cross-section on Figure 20.

Water Level Hydrographs First Water

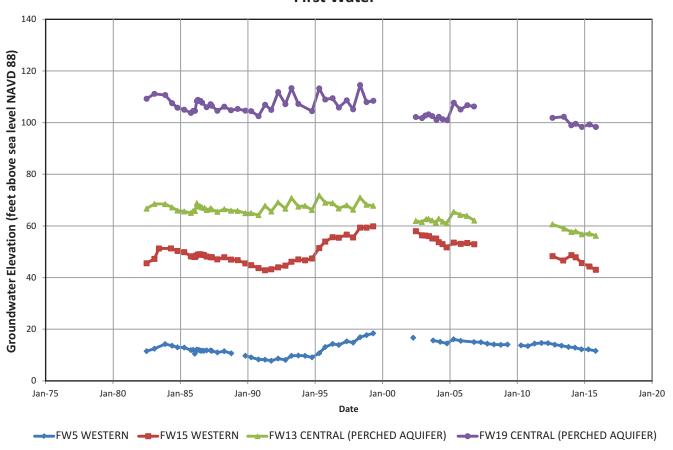


Figure 16
Water Level Hydrographs
Perched Aquifer/First Water
Los Osos Groundwater Basin
2015 Annual Report

Water Level Hydrographs Upper Aquifer

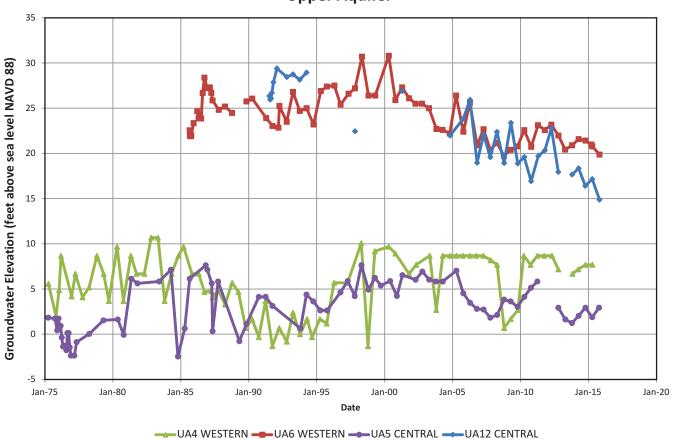


Figure 17 Water Level Hydrographs Upper Aquifer Los Osos Groundwater Basin 2015 Annual Report

Water Level Hydrographs Lower Aquifer

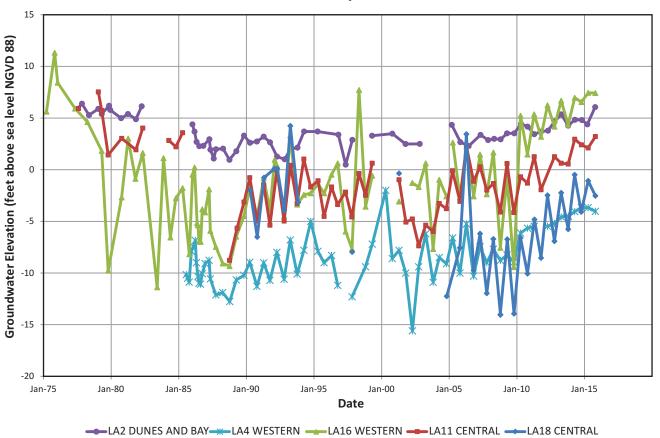
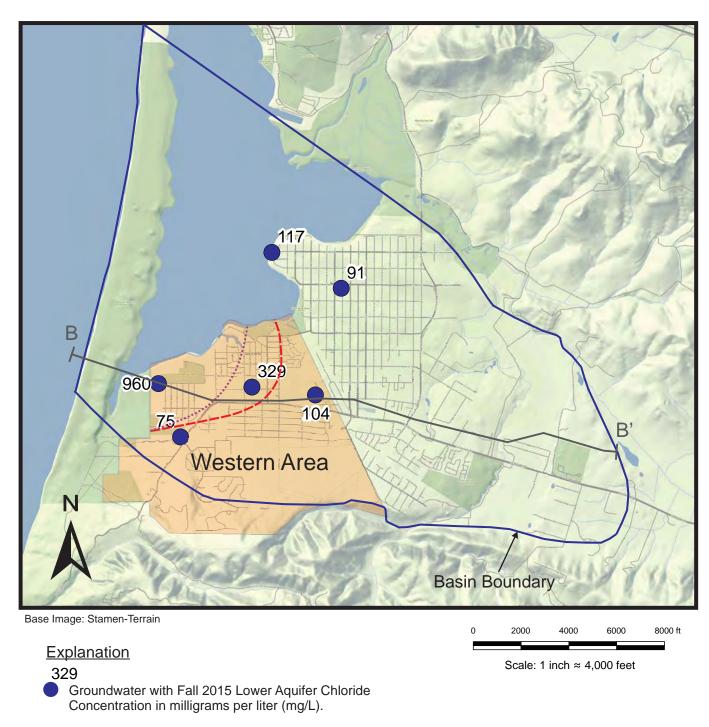
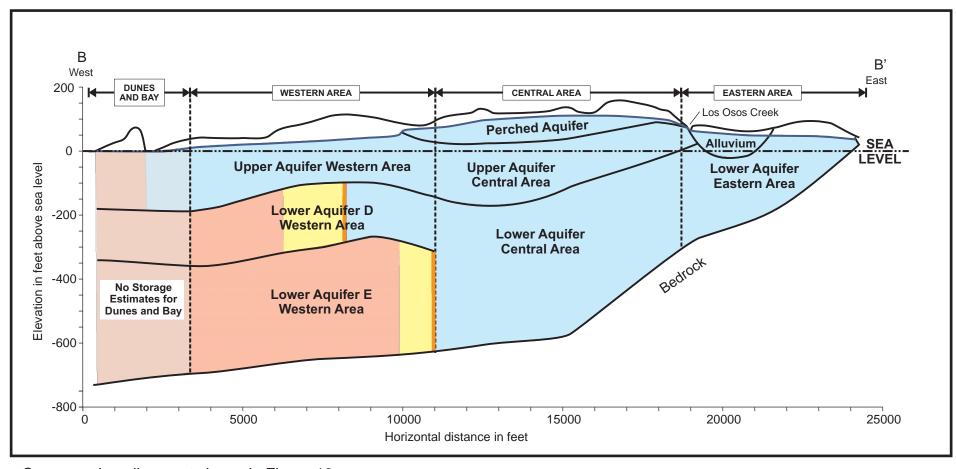



Figure 18 Water Level Hydrographs Lower Aquifer Los Osos Groundwater Basin 2015 Annual Report



———— 2015 seawater intrusion front in Western Area (250 mg/l chloride isopleth)

...... 2005 seawater intrusion front in Western Area (250 mg/l chloride isopleth)

B B' Cross-section alignment (Figures 5 and 20)

Figure 19 Seawater Intrusion Front Western Area Lower Aquifer Zone D Los Osos Groundwater Basin 2015 Annual Report

Cross-section alignment shown in Figure 19

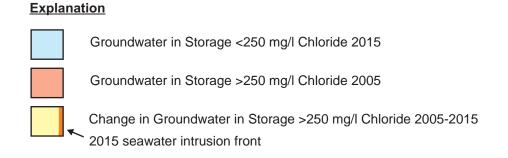


Figure 20 Basin Storage Compartments Los Osos Groundwater Basin 2015 Annual Report

7.4 Groundwater in Storage

Groundwater in storage for basin areas and aquifers has been estimated through a systematic approach of water level contouring, boundary definition, and volume calculations. The methodology was developed to facilitate change in storage calculations from year to year. An example storage calculation for the Eastern Area is shown in Appendix G.

Storage estimates were performed for Spring 2015 and Spring 2005 (for historical reference) and included separate estimates for the following areas and aquifers:

- Perched Aquifer
- Western Area Upper Aquifer
- Western Area Lower Aquifer
- Central Area Upper Aquifer
- Central Area Lower Aquifer
- Eastern Area Alluvial and Lower Aquifer

The various storage compartments are shown conceptually in Figure 20. Storage estimates for the Lower Aquifer in the Western and Central basin are divided into fixed volume and confined volume components. The fixed volume component of storage is based on the specific yield of the aquifer sediments, and is fixed because the Lower Aquifer is never dewatered in the Western and Central areas. The confined component adds a relatively small volume of transient storage associated with the aquifer pressure, and is based on the storativity of the aquifer. Confined and semi-confined aquifer storativity values are typically orders of magnitude less than the specific yield. The average specific yield for basin sediments is estimated at 0.1 (Appendix G). The storativity value used for the confined aquifer in the Western and Central areas is estimated at 0.0008 (Cleath & Associates, 2005).

The fixed volume storage component of the Lower Aquifer in the Western Area has been further divided into the volume intruded by seawater and the non-intruded volume. The intruded volume is defined as groundwater with a chloride concentration of 250 mg/l or greater. Zone E in the Western Area is mostly intruded, while Zone D is mostly non-intruded groundwater. Calculations for intruded versus non-intruded storage volumes are only performed for Zone D. Table 16 summarizes the fresh groundwater in storage estimates for 2015.

T	Table 16. Spring and Fall	2015 Groundwar	ter in Storag	ge (<250 mg/l	Chloride)			
	Aquifer		Sprin	g 2015	Fall 2015				
Basin Area		Zone	Total	Above Sea Level	Total	Above Sea Level			
				ACRE-FEET					
Western	Perched	A, B	4,200	4,200	4,200	4,200			
and Central	Upper	С	27,000	7,700	26,600	7,200			
Western	Lower (fixed vol.)	D^1	14,300	0	14,300	0			
western	Lower (confined vol.) ²	\mathbf{D}^1	80	1	70	1			
G . 1	Lower (fixed vol.)	D, E	56,100	0	56,100	0			
Central	Lower (confined vol.) ²	D, E	90	3	80	2			
Eastern	Alluvial and Lower	Alluvial, D, E	17,900	3,400	18,000	3,500			
	TOTAL		119,700	15,300	119,400	14,900			

NOTES: ¹ Western Area Zone E not included due to high chloride.

Total groundwater in storage for the basin (excluding Dunes and Bay area) averaged close to 120,000 acre feet in 2015, with approximately 15,000 acre-feet above sea level. There was a seasonal storage decline of 300 acre-feet between Spring 2015 and Fall 2015.

There is approximately 70,000 acre-feet of fixed volume storage within the Lower Aquifer in the Western Area Zone D and Central Area. Since groundwater pressures in the Lower Aquifer within the Western and Central areas average more than 100 feet above the top of the aquifer, dewatering is unlikely, and this volume of storage will not change. The Lower Aquifer confined volume, by comparison, represents the water that is available without dewatering any portion of the Lower Aquifer, and is essentially the pressure component. Water is relatively incompressible, so once the pore spaces of an aquifer have been filled, substantial confining pressure is required to further increase the storage volume. Conversely, there is a much greater drop in aquifer pressure for storage withdrawals under confined conditions, compared to unconfined conditions. This is why the calculated confined volume of water shown in Table 16 for the Lower Aquifer Western and Central areas totals less than 200 acre-feet. As previously mentioned, this smaller storage volume assumes a confined aquifer storativity of 0.0008, compared to the unconfined specific yield of 0.1.

Table 17 compares Spring 2015 groundwater in storage with Spring 2005. Lower Aquifer storage calculations were for fixed volumes only (no confined volumes), but included Western area Zone E. Both intruded and non-intruded storage volumes were calculated based on the position of the 250 mg/l chloride isopleth, which is shown for 2005 and 2015 in Figure 19.

²Lower aguifer confined volume estimates shown for comparison to fixed volumes

Т	Cable 17. Spring 2005 an	d Spring 2015 Groun	dwater in	Storage Co	mparison				
	Aquifer		Sprin	g 2005	Spring 2015				
Basin Area		Zone	Total	Above Sea Level	Total	Above Sea Level			
			ACRE-FEET						
Western	Perched	A, B	5,000	5,000	4,200	4,200			
and Central	Upper	С	29,400	10,400	27,000	7,700			
		D (Cl <250 mg/l) ¹	17,000		14,300				
Western	Lower	$D (Cl > 250 \text{ mg/l})^1$	3,900	na²	6,600	na²			
		$E (C1 > 250 \text{ mg/l})^{1,3}$	59,500	nu	59,500	IIa			
Central	Lower	D, E	56,100		56,100				
Eastern	Alluvial and Lower	Alluvial, D, E	19,300	4,800	17,900	3,400			
	TOTAL	·	190,200	20,200	185,600	15,300			

NOTES: ¹ Chloride less than/greater than 250 milligrams per liter (non-intruded/intruded) - fixed volume only

The total decline in storage between 2005 and 2015 is estimated at approximately 4,600 acre feet, or 460 acre-feet per year. There has also been a decline in fresh groundwater storage (<250 mg/l chloride) of 2,700 acre-feet, or 270 acre-feet per year.

7.5 Basin Metrics

The Basin Plan established two methods for measuring progress in management of seawater intrusion, one based on comparing groundwater extractions with the sustainable yield of the basin as calculated by the basin model, and one based on monitoring data from the Groundwater Monitoring Program. The first method involves the Basin Yield Metric (BYM) and the Basin Development Metric (BDM), while the latter method involves the Water Level Metric, The Chloride Metric, and the Nitrate Metric.

7.5.1 Basin Yield and Development Metrics

The Basin Yield Metric compares the actual amount of groundwater extractions in a given year with the maximum sustainable yield of the basin under then-current conditions. Sustainable yield is defined for basin model applications as the maximum amount of water that may be extracted from the basin with none of the active wells producing water with chloride concentration in excess of 250 mg/l. A chloride concentration of 250 mg/l is the recommended limit for drinking water

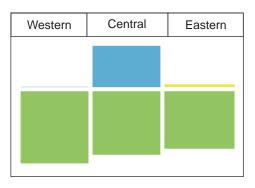
²Lower aquifer volumes above sea level negligible (<10 acre-feet)

³Lower aguifer Zone E mostly intruded in Western Area

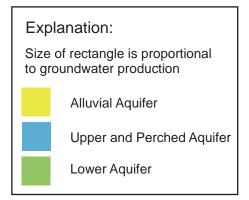
(one-half of the Maximum Contaminant Level upper limit). The Basin Yield Metric for 2015 is a ratio expressed as follows:

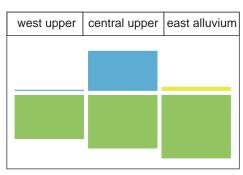
Groundwater production in 2015 was 2,170 acre-feet. The estimated sustainable yield of the basin with the infrastructure in place in 2015 is 2,450 acre-feet per year. Therefore, the Basin Yield Metric in 2015 is 89. In 2014, the corresponding Basin Yield Metric was 98, and was the first year the metric has been below 100 since 1978. The Basin Plan objective for the Basin Yield Metric is 80 or less.

The Basin Development Metric compares the sustainable yield of the basin in a given year with the maximum sustainable yield of the basin with all potential Basin Plan projects implemented. The Basin Yield Metric for 2015 is a ratio expressed as follows:

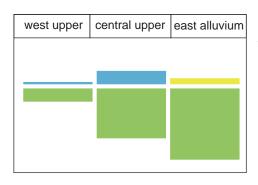

The 2015 sustainable yield is estimated at 2,450 acre-feet. The maximum potential basin yield with all Basin Plan projects implemented is estimated at 3,500 acre-feet, therefore, the Basin Development Metric is 70. There has been no change in the Basin Development Metric since last calculated in 2013.

As presented in Basin Plan, the estimated sustainable yield of the basin will increase beginning with urban water reinvestment Program U and basin infrastructure Program A, both of which are currently in progress (portions of Program A were completed in 2015). For basin metrics calculations, increases to the sustainable yield will be credited when a basin program has been fully implemented.

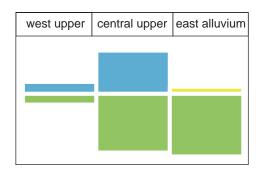

Figure 21 compares the Basin Yield Metric and area production in the basin since 2005. The Basin Yield Metric has dropped from an average of 128 between 2005 and 2009 to 86 in 2015. There has been a significant reduction in total production and the lower aquifer production, especially in the Western Area. Two development scenarios from the Basin Plan are also compared.

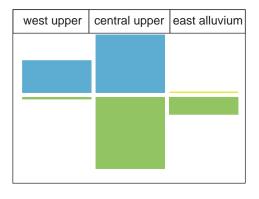

7.5.2 Water Level, Chloride, and Nitrate Metrics

The Water Level, Chloride, and Nitrate Metrics are physical measurements of effectiveness of basin management. The Water Level and Chloride Metrics address changes in the Lower Aquifer related to seawater intrusion mitigation, while the Nitrate Metric addresses changes in First Water and the Upper Aquifer related to nitrate contamination mitigation.



2005-2009 Production 3,060 AFY Basin Yield Metric = 128




2010-2014 Production 2,600 AFY Basin Yield Metric = 106

Year 2015 Production 2,170 AF Basin Yield Metric = 87

E+AC+U (No Further Development Scenario) refer to Basin Plan for full description Production 2,230 AFY Basin Yield Metric = 74

E+UG+ABC (Buildout Scenario) refer to Basin Plan for full description Production 2,380 AFY Basin Yield Metric = 71

Figure 21 Basin Yield Metric Comparison Los Osos Groundwater Basin 2015 Annual Report

Water Level Metric

The Water Level Metric is defined as the average elevation of the piezometric surface measured in feet above mean sea level in five Lower Aquifer wells. These wells are LA2, LA3, LA11, LA14, and LA16 (Figure 4).

Two Water Level Metric wells are positioned on the west side of the current pumping depression (LA14 and LA16) and one well is on the bay front (LA11). Development of a pumping depression is a normal response to basin groundwater development, but currently extends too far to the west, and draws seawater into the basin. As basin production is redistributed through the basin infrastructure program, the inland Water Level Metric wells will monitor Lower Aquifer pressures in critical areas at the leading edge of seawater intrusion.

The last two Water Level Metric wells are located on the Morro Bay sandspit (LA2 and LA3), where monitoring will help evaluate regional effects, rather than just localized water level rebound. Water in these wells ranges from 25 to 45 percent seawater, and density corrections to equivalent freshwater head were made in prior metric calculations. Upon review of the 2015 monitoring data, however, the density corrections for the sandspit wells are not recommended when calculating the Water Level Metric. The reason for removing density correction is because there is significant lag time between water level changes and the resulting water quality response. Under basin recovery conditions (Lower Aquifer water level rising), the density correction temporarily raises the metric higher than its long-term value for a given pressure. Table 18 presents the 2015 Water Level Metric without density correction. Figure 22 shows individual Water Level Metric well hydrographs (NGVD 29 datum). Figure 23 graphs historical trends in the metric.

Table 18.	2015 Water Level Metric
Metric Well	Spring 2015 Groundwater Elevation (feet above sea level - NGVD 29 Datum)
LA2	1.6
LA3	0.2
LA11	-0.7
LA13	-2.7
LA16	4.6
Water Level Metric (average)	0.6 feet

The Spring 2015 Water Level Metric is 0.6 feet NGVD 29 (approximately 3.4 feet NAVD 88). Mean sea level is approximately 0 feet in the NVGD 29 datum. The metric has been rising since 2005, likely in response to a decrease in Lower Aquifer production. The Basin Plan objective for the Water Level Metric is 8 feet. Removal of the equivalent freshwater head adjustments for the sandspit wells, and adjustment of reference point elevations to the NGVD datum has lowered the metric compared to prior calculations. A corresponding adjustment of the objective may also be appropriate, however, additional monitoring to establish the metric trend under wastewater project

Water Level Hydrographs Water Level Metric Wells

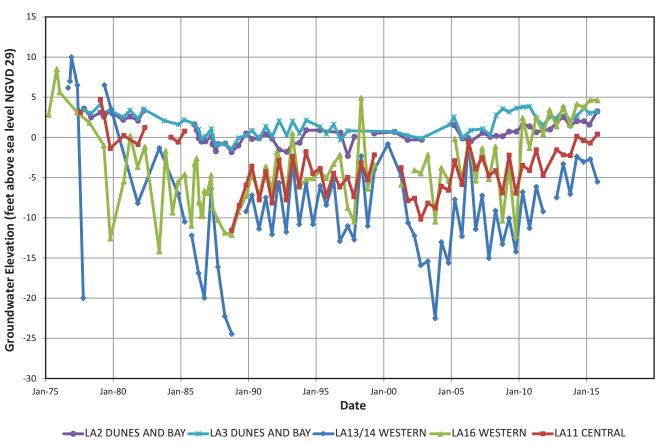


Figure 22 Water Level Hydrographs Lower Aquifer Los Osos Groundwater Basin 2015 Annual Report

Chloride and Water Level Metric Lower Aquifer Composite Values

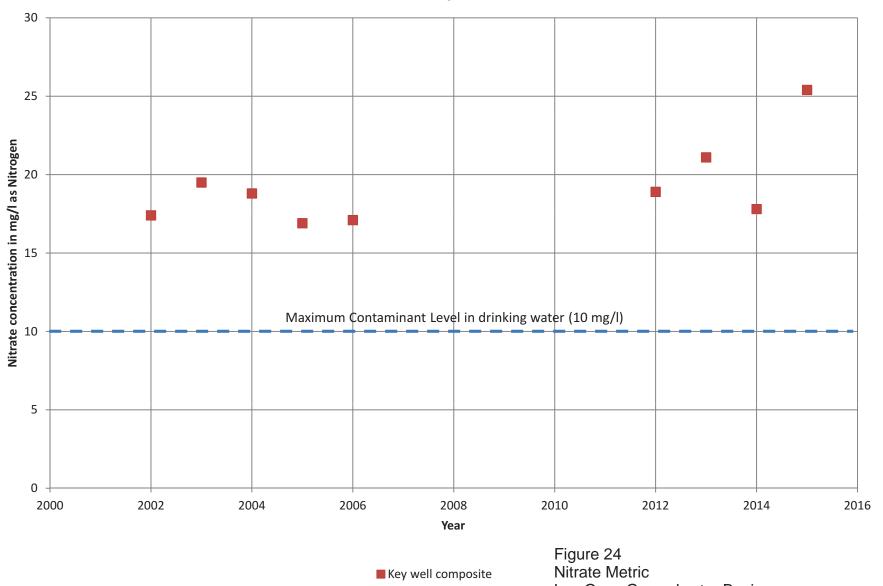


Figure 23 Chloride and Water Level Metric Los Osos Groundwater Basin 2015 Annual Report

conditions, along with a review of all well elevation reference points by a licensed surveyor is recommended prior to considering a change in the water level metric objective.

Chloride Metric

The Chloride Metric is defined as the weighted average concentration of chlorides in four key wells. One key well is within the historical path of seawater intrusion (LA10), which parallels the synclinal axis of the basin. Reduction in pumping from the Lower Aquifer should result in measurable declines in chloride concentrations at this well. There are also three key wells on the perimeter of the seawater intrusion front (LA8, LA11, and LA12). Wells LA11 and LA12 monitor Lower Aquifer chloride concentrations on the broad north limb of the basin syncline, while LA8 monitors chloride concentrations on the steeper south limb. When calculating the Chloride Metric, the concentration of Well LA10 is given twice the weight of the other three wells, in order to increase the sensitivity of the metric to management actions. Table 19 presents the 2015 Chloride Metric. Figure 23 graphs historical trends in the metric. The Chloride Metric target level is 100 mg/l.


Table 1	9. 2015 Chloride Metric
Metric Well	Fall 2015 Chloride Concentrations
LA8	75 mg/l
LA10	329 mg/l (double counted for average)
LA11	117 mg/l
LA12	91 mg/l
Chloride Metric (weighted average)	188 mg/l

The 2015 water quality monitoring results indicate continued advance of the seawater intrusion front. There has been a short-term decline in the rate of intrusion between April and October 2015, a comparison between July 2014 and October 2015, however, monitoring results indicates the annual rate of intrusion remains at historical levels of close to 200 feet per year in Zone D.

Nitrate Metric

The Nitrate Metric is based on the average measurement of nitrate concentrations in five First Water key wells located in areas of the basin that have been impacted by elevated nitrate concentrations. Focusing on shallow, adversely impacted wells provides a sensitive method of tracking changes in nitrate concentrations in groundwater over time, but does not represent average nitrate levels across the basin. Table 20 presents the Nitrate Metric for Fall 2015. Figure 24 graphs historical trends in the metric.

Nitrate Metric First Water Composite Values

Los Osos Groundwater Basin 2015 Annual Report

Table	20. 2015 Nitrate Metric
Metric Well	Fall 2015 Nitrate-Nitrogen Concentrations
FW2	27.8 mg/l
FW6	18.6 mg/l
FW10	23.4 mg/l
FW15	32.6 mg/l
FW17	24.8 mg/l
Nitrate Metric (average)	25.4 mg/l (NO3-N)

The Nitrate Metric was measured at 25.4 mg/l nitrate-nitrogen (NO3-N), which is 2.5 times the Maximum Contaminant Level of 10 mg/l. Independent of Basin Plan actions, construction and operation of the Los Osos Wastewater Project will largely stop nitrate loading in the basin from septic disposal within the wastewater service area. Nitrate concentrations in the basin are expected to begin declining over the next decade, with the target Nitrate Metric at 10 mg/l (the drinking water standard). If nitrate-nitrogen concentrations the impacted Nitrate Metric wells decrease to 10 mg/l or less, it may reasonably be inferred that nitrate levels are generally lower across the Upper Aquifer, or will be in the reasonably foreseeable future.

8. BASIN STATUS

The status of the Los Osos Groundwater Basin in 2015 is summarized as follows:

- Exceptional drought conditions have persisted.
- The basin remains classified as Critically Overdrafted by the Department of Water Resources.
- Seawater intrusion into the Lower Aquifer declined between April and October 2015, but long-term trends indicate a continued intrusion rate of close to 200 feet per year.
- The Water Level Metric was stable between Spring 2014 and Spring 2015, but remains several feet below the target. The Chloride Metric was stable between Spring and Fall 2015, but has been increasing away from the target between Fall 2014 and Fall 2015. The Nitrate Metric increased away from the target value between 2014 and 2015.

9. **RECOMMENDATIONS**

The following recommendations are provided for BMC consideration:

 Add up to 12 existing wells to the monitoring network. Most of these wells are monitored for other programs and will provide useful control for groundwater level contours and

seawater intrusion front delineation.

- Add a new Upper Aquifer and Lower Aquifer monitoring well near the bay, as recommended in the Basin Plan.
- Retain a licensed surveyor to review all available documentation on reference point elevations and to perform wellhead surveys as needed.
- Develop a rating curve for stream flow Sensor 751 on Los Osos Creek.
- Complete an outreach program for private well owner participation. Water level data from many of these wells can be used as aggregated information.
- The County Baseline Monitoring Program, which test primarily for nitrogen compounds, does not include testing for all the general mineral constituents listed in the BMC Groundwater Monitoring Program. Performing the additional general mineral analyses on water samples collected during the fall (October-November) monitoring event is recommended.

10. ADAPTIVE MANAGEMENT PROGRAM

(Placeholder for BMC use)

11. REFERENCES

- Brown and Caldwell, 1983, <u>Los Osos Baywood Park Phase I Water Quality Management Study</u>, April 1983.
- Cleath & Associates, 2005, <u>Sea Water Intrusion Assessment and Lower Aquifer Source Investigation of the Los Osos Valley Ground Water Basin, San Luis Obispo County,</u> California, prepared for the Los Osos Community Services District, October 2005.
- Cleath & Associates, 2006, <u>Task 3 Upper Aquifer Water Quality Characterization</u>, prepared for the Los Osos Community Services District, June 2006.
- Cleath & Associates, 2002-2006, Quarterly and Semi-Annual Groundwater Monitoring Reports for the Los Osos Nitrate Monitoring Program, prepared for the Los Osos Community Services District.
- Cleath-Harris Geologists, 2009a, <u>Water Use Estimates for Private Domestic Wells</u>, Technical Memorandum prepared for the Los Osos ISJ Group, July 29, 2009.

- Cleath-Harris Geologists, 2009b, <u>Water Use Estimates for Los Osos Creek Valley Irrigation Wells</u>, Technical Memorandum prepared for the Los Osos ISJ Group, July 29, 2009.
- Cleath-Harris Geologists, 2010, <u>Water Quality Monitoring Results Summary, November 2009-January 2010, Los Osos Valley Groundwater Basin</u>, Technical Memorandum prepared for the Los Osos ISJ Group, April 26, 2010.
- Cleath-Harris Geologists, 2012, <u>Los Osos Water Recycling Facility Baseline Groundwater</u> <u>Quality Monitoring</u>, <u>August 2012</u>, prepared for San Luis Obispo County Department of Public Works, October 2012.
- Cleath-Harris Geologists, 2013, Los Osos Water Recycling Facility Baseline Groundwater Quality Monitoring, June 2013, prepared for San Luis Obispo County Department of Public Works, July 2013.
- Cleath-Harris Geologists, 2014, <u>Seawater Intrusion Monitoring</u>, <u>Los Osos Valley Groundwater</u> <u>Basin</u>, Technical Memorandum, prepared for the Los Osos ISJ Group, October 7, 2014.
- Cleath-Harris Geologists, 2015a, <u>April 2015 Lower Aquifer Monitoring</u>, <u>Los Osos Groundwater Basin</u>, Draft Technical Memorandum prepared for the Los Osos ISJ Group, May 26, 2015.
- Cleath-Harris Geologists, 2015b, October 2015 Lower Aquifer Monitoring, Los Osos Groundwater Basin, Technical Memorandum prepared for the Los Osos ISJ Group, December 28, 2015.
- Cleath-Harris Geologists, 2015c, <u>Los Osos Water Recycling Facility Baseline Groundwater</u>
 <u>Quality Monitoring, May 2015</u>, prepared for San Luis Obispo County Department of Public Works, June 2015.
- Cleath-Harris Geologists, 2015d, <u>Los Osos Water Recycling Facility Baseline Groundwater</u>
 <u>Quality Monitoring, November 2015</u>, prepared for San Luis Obispo County Department of Public Works, December 2015.
- Cleath-Harris Geologists, 2016, <u>Los Osos Valley Groundwater Basin Boundary Modification</u>
 <u>Request</u>, Technical Memorandum prepared for San Luis Obispo County Department of Public Works, March 25, 2016.
- Rincon Consultants, 2014a, <u>Baseline Groundwater Quality Monitoring Report for the Los Osos</u>
 <u>Water Recycling Facility</u>, prepared for San Luis Obispo County Department of Public Works, February 2014.

- Rincon Consultants, 2014b, May 2014 Baseline Groundwater Quality Monitoring Report, Los Osos Water Recycling Facility, prepared for San Luis Obispo County Department of Public Works, February 2014.
- Rincon Consultants, 2014c, October 2014 Baseline Groundwater Quality Monitoring Report, Los Osos Water Recycling Facility, prepared for San Luis Obispo County Department of Public Works, December 2014.
- Smith, C. T., and Griggs, A. B., 1944, <u>Chromite Deposits near San Luis Obipo</u>, <u>San Luis Obispo</u> <u>County</u>, <u>California</u>, U. S. Geological Survey Bulletin 945-B.
- Department of Water Resources (DWR), State of California, 1973, Los Osos Baywood Ground Water Protection Study, Southern District Report, October 1973.
- ISJ Group, 2015, <u>Updated Basin Plan for the Los Osos Groundwater Basin</u>, January 2015.
- San Luis Obispo County Public Works Department, 2005, Water Years 2001-02 and 2002-03 Hydrologic Report, May 16, 2005.
- Yates, E.G., and Wiese, J. H., 1988, <u>Hydrogeology and Water Resources of the Los Osos Valley</u>
 <u>Ground-Water Basin, San Luis Obispo County, California,</u> U. S. Geological Survey,
 Water-Resources Investigations Report 88-4081.

APPENDIX A

Groundwater Monitoring Program Well Information

Los Osos Basin Plan Montitoring Well Network First Water/Perched Aquifer Group

					Coordinate	s		_	Well	Data			A	quifer		
Program ID	State Well Number	Name/Location	Basin Area	Latitude	Longitude	Reference Point Elevation*	Well Type	Well Owner	Screened Interval	Total Depth	Casing Diameter (inches)	Creek Valley Alluvium	Zone A/B	Zone C	Zone D	Zone E
FW1								PRIVATE								
FW2	30S/10E-13L5	Howard/ Del Norte	Western	35.3149	120.8552	32.63	MW	LOCSD	26-36	37	2			Х		
FW3	30S/10E-13G	South Court	Western	35.3162	120.8498	50.95	MW	LOCSD	47-52	34	2			Х		
FW4	30S/10E-13H	Broderson/Skyline	Western	35.3158	120.8432	49.33	MW	LOCSD	154-164	164	2			Х		
FW5	30S/10E-13Q1	Woodland Dr.	Western	35.3119	120.8495	101.27	MW	LOCSD	97-100	105	2			X		
FW6	30S/10E-24A	Highland/Alexander	Western	35.3083	120.8453	193.04	MW	LOCSD	154-164	164	2			х		
FW7	30S/10E-24Ab	Broderson leachfield	Western	35.3065	120.8460	255.00	MW	LOCSD	200-240	240	5			Х		
FW8	30S/11E-7L3	Santa Ysabel/5th	Central	35.3302	120.8377	45.76	MW	LOCSD	40-50	50	2			Х		
FW9	30S/11E-7K2	12th/ Santa Ysabel	Central	35.3299	120.8300	90.71	MW	LOCSD	55-65	70	2			X		
FW10	30S/11E-7Q1	LOCSD 8th Street - shallow	Central	35.3260	120.8342	25.29	MW	LOCSD	29-43, 54-75	75	8			X		
FW11	30S/11E-7R1	El Moro/12th St.	Central	35.3263	120.8298	61.93	MW	LOCSD	25-35	35	2			х		
FW12	30S/11E-18C1	Pismo Ave./ 5th St.	Central	35.3227	210.8376	34.55	MW	LOCSD	25-35	35	2			х		
FW13	30S/11E-18B1	Ramona/10th	Central	35.3208	120.8320	79.89	MW	LOCSD	25-35	35	2		X			
FW14								PRIVATE								
FW15	30S/11E-18N1	Manzanita/Ravenna	Central	35.3109	120.8401	125.53	MW	LOCSD	85-95	95	2		X			
FW16	30S/11E-18L4	Ferrell Ave.	Western	35.3138	120.8346	103.85	MW	LOCSD	25-35	35	2		X			
FW17	30S/11E-18L3	Palisades Ave.	Central	35.3138	120.8374	88.02	MW	LOCSD	43-53	53	2		X			
FW18								SLCUSD								
FW19	30S/11E-18J6	Los Olivos/Fairchild	Central	35.3130	120.8271	125.74	MW	LOCSD	25-35	35	2		X			
FW20	30S/11E-8Mb	Santa Maria/18th Street	Central	35.3287	120.8233	95.00	MW	LOCSD	37-47	47	2		X			
FW21	30S/11E-8N2	South Bay Blvd. OBS	Central	35.3253	120.8213	95.99	MW	LOCSD	40-50	50	2		X			
FW22								PRIVATE								
FW23								PRIVATE								
FW24								PRIVATE								
FW25								PRIVATE								
FW26								PRIVATE								
FW27								PRIVATE								
FW28								PRIVATE							-	

*Datum Varies MW = Monitoring Well

Los Osos Basin Plan Montitoring Well Network Upper Aquifer Group

					Coordinate	S		_	Well	Data			A	quifer		
Program ID	State Well Number	Name/Location	Basin Area	Latitude	Longitude	Reference Point Elev.	Well Type	Well Owner	Screened	Total Depth	Casing Diameter (inches)	Creek Valley Alluvium	Zone A/B	Zone C	Zone D	Zone E
UA1	30S/10E-11A1	Sandspit #1 West	Dunes and bay	35.3358	120.8638	16.39	MW	SLO CO.	150-160	160	2			х		
UA2	30S/10E-14B1	Sandspit #3 Shallow	Dunes and bay	35.3219	120.8682	16.83	MW	SLO CO.	190-200	200	1.5			х		
UA3	30S/10E-13F4	GSWC Skyline	Western	35.3165	120.8533	19.00	M	GSWC	90-195	206	14			X		
UA4	30S/10E-13L1	S&T Mutual #1	Western	35.3148	120.8531	39.00	M	S&T	100-141	141	8			Х		
UA5	30S/11E-7N1	LOCSD 3rd St. Well	Central	35.3256	120.8401	9.13	M	LOCSD	56-84	80	8			Х		
UA6	30S/11E-18L8	USGS Palisades OBS East 2"	Western	35.3149	120.8381	75.80	MW	SLO CO.	100-140	140	2			х		
UA7	30S/11E-18L7	USGS Palisades OBS West 2"	Western	35.3149	120.8381	75.40	MW	SLO CO.	180-220	220	2			Х		
UA8	30S/11E-18K7	LOCSD 10th St. Observation West	Central	35.3130	120.8326	135.65	MW	LOCSD						X		
UA9	30S/11E-18K3	GSWC Los Olivos #3	Central	35.3133	120.8300	121.18	M	GSWC	148-202, 222-232	232	8			X		
UA10	30S/11E-18H1	LOCSD - 12th St.	Central	35.3161	120.8297	107.10	M	LOCSD	112-125, 145-159, 172-186, 216-231	232	10			x		
UA11								PRIVATE								
UA12	30S/11E-17E9	So. Bay Blvd OBS shallow	Central	35.3158	120.8240	105.85	MW	LOCSD	184-194	204	2			Х		
UA13	30S/11E-17E10	LOCSD South Bay upper	Central	35.3159	120.8239	106.00	M	LOCSD	170-210	220	8			X		
UA14								PRIVATE								
UA15								PRIVATE								

*Datum Varies	M = Municipal
	MW = Monitoring Well

Los Osos Basin Plan Montitoring Well Network Lower Aquifer Group

					Coordinate	S		<u>.</u>	Well	Data			A	quifer		
Program ID	State Well Number	Name/Location	Basin Area	Latitude	Longitude	Reference Point Elev.	Well Type	Well Owner	Screened	Total Depth	Casing Diameter (inches)	Creek Valley Alluvium	Zone A/B	Zone C	Zone D	Zone E
LA1	30S/10E-2A1	Sandspit #2 North	Dunes and Bay	35.3530	120.8617	15.83	MW	SLO CO.	220-230	230	2					х
LA2	30S/10E-11A2	Sandspit #1 East	Dunes and Bay	35.3358	120.8638	16.39	MW	SLO CO.	234-244	244	2				X	
LA3	30S/10E-14B2	Sandspit #3 Deep	Dunes and	35.3219	120.8682	16.83	MW	SLO CO.	270-280	280	2				X	
LA4								PRIVATE								
LA5	30S/10E-13L7	S&T Mutual #4	Western	35.3146	120.8531	37.00	M	S&T	160-300	300	8					
LA6	30S/10E-13L4	GSWC Pecho	Western	35.3129	120.8522	68.00	M	GSWC	240-380	675	14				X	
LA7								PRIVATE								
LA8	30S/10E-13N	S&T Mutual #5	Western	35.3088	120.8565	138.50	M	S&T	260-340	350	8				X	
LA9	30S/10E-24C1	GSWC Cabrillo-Rodman	Western	35.3077	120.8552	178.32	M	GSWC	250-500	508	10				X	
LA10	30S/10E-13J4	GSWC Rosina	Western	35.3145	120.8468	95.31	M	GSWC	290-406	409	10				X	X
LA11	30S/10E-12J1	Morro Bay Observation #5	Central	35.3299	120.8440	8.43	MW	SLO CO.	349-389	389	2					X
LA12	30S/11E-7Q3	LOCSD 8th St. Lower	Central	35.3259	120.8342	24.30	M	LOCSD	230-270	270	10				X	
LA13	30S/11E-18F2	LOCSD Ferrell #2	Central	35.3159	120.8358	100.00	M	LOCSD	425-620	625	12				X	X
LA14	30S/11E-18L6	USGS Palisades OBS 6"	Western	35.3149	120.8381	75.84	MW	SLO CO.	355-375, 430-480, 550-600	620	6				X	x
LA15	30S/11E-18L2	GSWC Library-Palisades	Western	35.3136	120.8377	85.00	M	LOCSD	340-380	394	12				х	
LA16								PRIVATE								
LA17	30S/11E-24A2	USGS Broderson	Western	35.3074	120.8433	210.40	MW	SLO CO.	800-860	860	6				X	х
LA18	30S/11E-18K8	10th St. Observation East	Central	35.3130	120.8325	135.74	MW	LOCSD	630-650	650	2					Х
LA19	30S/11E-19H2	USGS Bayview Heights 6"	Central	35.3043	120.8266	256.20	MW	SLO CO.	280-380	740	6				X	
LA20	30S/11E-17N10	GSWC South Bay #1	Central	35.3111	120.8240	140.00	М	GSWC	225-295, 325-395, 485-695	715	12			х	x	х
LA21	30S/11E-17E7	So. Bay Blvd OBS deep #3	Central	35.3158	120.8240	105.85	MW	LOCSD	480-490, 500-510	520	2					х
LA22	30S/11E-17E8	So. Bay Blvd OBS middle #2	Central	35.3158	120.8240	105.85	MW	LOCSD	270-280, 370-380	390	2				x	
LA23								PRIVATE								
LA24								PRIVATE								
LA25								PRIVATE								
LA26								PRIVATE								
LA27								PRIVATE								
LA28								PRIVATE								
LA29								PRIVATE								
LA30								PRIVATE								

*Datum	Varies	M = Municipal
		MW = Monitoring Well

Los Osos Groundwater Basin Monitoring Tasks First Water/Perched Aquifer Group

Program Well ID	Well Owner	Basin Plan Monitoring Code	County Water Level Program	LOWRF Baseline Groundwater Monitoring Program	2016 Basin Plan Monitoring Program
FW1	PRIVATE	L			L
FW2	LOCSD	L, G		L, G	
FW3	LOCSD	L		L	
FW4	LOCSD	L		L	
FW5	LOCSD	L		L	
FW6	LOCSD	TL, G, CEC		G	TL, CEC
FW7	LOCSD	L			L
FW8	LOCSD	L		L	
FW9	LOCSD	L		L	
FW10	LOCSD	TL, G		G	TL
FW11	LOCSD	L		L	
FW12	LOCSD	L		L	
FW13	LOCSD	L		L	
FW14	PRIVATE	L		L	
FW15	LOCSD	L, G		L,G	
FW16	LOCSD	L		L	
FW17	LOCSD	L, G		L,G	
FW18	SLCUSD	L			L
FW19	LOCSD	L		L	
FW20	LOCSD	L, G		L, G	
FW21	LOCSD	L		L	
FW22	PRIVATE	L, G		L, G	
FW23	PRIVATE	L		L	
FW24	PRIVATE	L	L		
FW25	PRIVATE	L	L		
FW26	PRIVATE	L, G, CEC			L, G, CEC
FW27	PRIVATE	TL			TL
FW28	PRIVATE	L, G	L		

L = WATER LEVEL
G = GENERAL MINERAL
CEC = CONSTITUENTS OF EMERGING CONCERN

LOCSD = Los Osos Community Services District SLCUSD = San Luis Coastal Unified School District

Los Osos Groundwater Basin Monitoring Tasks Upper Aquifer Group

Program Well ID	Well Owner	Basin Plan Monitoring Code	County Water Level Program	LOWRF Baseline Groundwater Monitoring Program	2016 Basin Plan Monitoring Program
UA2	SLO CO.	L	L		
UA3	GSWC	L, G			L, G
UA4	S&T	TL			TL
UA5	LOCSD	L		L	
UA6	SLO CO.	L	L		
UA7	SLO CO.	L	L		
UA8	LOCSD	L			L
UA9	GSWC	L, G			L, G
UA10	LOCSD	TL			TL
UA11	PRIVATE	L		L	
UA12	LOCSD	L		L	
UA13	LOCSD	L, G			L, G
UA14	PRIVATE	L			L
UA15	PRIVATE	L			L

L = WATER LEVEL
G = GENERAL MINERAL
TL = TRANSDUCER WATER LEVEL

LOCSD = Los Osos Community Services District SLO CO = San Luis Obispo County GSWC = Golden State Water Company S&T = S&T Mutual Water Company

Los Osos Groundwater Basin **Monitoring Tasks Lower Aquifer Group**

Program Well ID	Well Owner	Basin Plan Monitoring Code	County Water Level Program	2016 Basin Plan Monitoring Program
LA2	SLO CO.	L	L	
LA3	SLO CO.	L	L	
LA4	PRIVATE	L, GL		L, GL
LA5	S&T	L	L	
LA6	GSWC	L, G ¹	L	
LA7	PRIVATE	TL		TL
LA8	S&T	L, G		L,G
LA9	GSWC	L		L, G ²
LA10	GSWC	L, G		L,G
LA11	SLO CO.	L, G		L,G
LA12	LOCSD	L, G		L,G
LA13	LOCSD	TL		TL
LA14	SLO CO.	L	L	
LA15	LOCSD	L, G		L,G
LA16	PRIVATE	L	L	
LA17	SLO CO.	L	L	
LA18	LOCSD	L, G		L,G
LA19	SLO CO.	L	L	
LA20	GSWC	L, G		L,G
LA21	LOCSD	L	L	
LA22	LOCSD	L	L	G ²
LA23	PRIVATE	L, G		L, G
LA24	PRIVATE	L	L	
LA25	PRIVATE	L		L
LA26	PRIVATE	L	L	
LA27	PRIVATE	TL		TL
LA28	PRIVATE	L, G		L, G
LA29	PRIVATE	L	L	
LA30	PRIVATE	L, G		L
103	1	1		
18K9 ³	LOCSD	NA		G
13M2 ³	PRIVATE	NA		G

18K9 ³	LOCSD	NA	G
13M2 ³	PRIVATE	NA	G

L = WATER LEVEL

G = GENERAL MINERAL

GL = GEOPHYSICAL LOG

TL = TRANSDUCER WATER LEVEL

LOCSD = Los Osos Community Services District

SLO CO = San Luis Obispo County

GSWC = Golden State Water Company

S&T = S&T Mutual Water Company

NOTES:

- 1 Remove G from LA6 out of service.
- 2 Add G to LA9 and LA22
- 3 No assigned Program ID; State Well ID listed

Well IDs with both April and October water quality monitoring in Italics

APPENDIX B

Field Methods

Groundwater Level Measurement Procedures for the Los Osos BMC Groundwater Monitoring Program

Introduction

This memorandum establishes procedures for measuring and recording groundwater levels for the Los Osos Groundwater Monitoring Program, and describes various methods used for collecting meaningful groundwater data.

Static groundwater levels obtained for the Groundwater Monitoring Program are determined by measuring the distance to water in a non-pumping well from a measuring point that has been referenced to sea level. Subtracting the distance to water from the elevation of the measuring point determines groundwater surface elevations above or below sea level. This is represented by the following equation:

$$E_{GW} = E_{RP} - D$$

Where:

 $E_{GW} = E_{levation}$ Elevation of groundwater above mean sea level (feet) Elevation above sea level at measuring point (feet)

D = Depth to water (feet)

References

The U.S. Geological Survey (U.S.G.S.) has conducted extensive investigations into methods for measuring groundwater levels. In conjunction with several other federal agencies, the U.S.G.S. published the "National Handbook of Recommended Methods for Water-Data Acquisition" (1977); "Introduction to Field Methods for Hydrologic and Environmental Studies, (2001); and several "Ground Water Procedure Documents" (1997). The California Department of Water Resources (DWR) published "Groundwater Elevation Monitoring Guidelines" for use in the California Statewide Groundwater Elevation Monitoring (CASGEM) program (2010). Procedures for obtaining and reporting water level data for the Los Osos Groundwater Monitoring Program are based on these U.S.G.S. and DWR documents.

Well Information

Table 1 below lists important well information to be maintained in a well file or in a field notebook. Additional information that should be available to the person collecting water level data include a description of access to the property and the well, the presence and depth of cascading water, or downhole obstructions that could interfere with a sounding cable.

Table 1 Well File Information

Well Completion Report	Hydrologic Information	Additional Information to be Recorded
Well name	Map showing basin boundaries and wells	Township, Range, and 1/4 1/4 Section
Well Owner	Name of groundwater basin	Latitude and Longitude (Decimal degrees)
Drilling Company	Description of aquifer	Assessor's Parcel Number
Location map or sketch	Confined, unconfined, or mixed aquifers	Description of well head and sounding access
Total depth	Pumping test data	Measuring point & reference point elevations
Perforation interval	Hydrographs	Well use and pumping schedule if known
Casing diameter	Water quality data	Date monitoring began
Date of well completion	Property access instructions/codes	Land use

Reference Points and Reference Marks

Reference point (RP) elevations are the basis for determining groundwater elevations relative to sea level. The RP is generally that point on the well head that is the most convenient place to measure the water level in a well. In selecting an RP, an additional consideration is the ease of surveying either by Global Positioning System (GPS) or by leveling.

The RP must be clearly defined, well marked, and easily located. A description, sketch, and photograph of the point should be included in the well file. Additional Reference Marks (RMs) may be established near the wellhead on a permanent object. These additional RMs can serve as a benchmark by which the wellhead RP can be checked or re-surveyed if necessary. All RMs should be marked, sketched, photographed, and described in the well file.

All RPs for Groundwater Monitoring Program wells should be reported based on the same horizontal and vertical datum by a California licensed surveyor to the nearest tenth of one foot vertically, and the nearest one foot horizontally. The surveyor's report should be maintained in the project file.

In addition to the RP survey, the elevation of the ground surface adjacent to the well should also be measured and recorded in the well file. Because the ground surface adjacent to a well is rarely uniform, the average surface level should be estimated. This average ground surface elevation is referred to in the U.S.G.S. Procedural Document (GWPD-1, 1997) and DWR guidelines as the Land Surface Datum (LSD).

Water Level Data Collection

Prior to beginning the field work, the field technician should review each well file to determine which well owners require notification of the upcoming site visit, or which well pumps need to be turned off to allow for sufficient water level recovery. Because groundwater elevations are used to construct groundwater contour maps and to determine hydraulic gradients, all water level measurements should be collected within as short a period of time as practical. The scope and coordination required for Groundwater Monitoring Program data collection may result in several weeks between the first and last data point used for contour maps. Any significant changes in groundwater conditions during monitoring events should be noted in the Annual Monitoring Report. For an individual well, the same measuring method and the same equipment should be used during each sampling event where practical.

A static water level should represent stable, non-pumping conditions at the well. When there is doubt about whether water levels in a well are continuing to recover following a pumping cycle, repeated measurements should be made. If an electric sounder is being used, it is possible to hold the sounder level at one point slightly above the known water level and wait for a signal that would indicate rising water. If applicable, the general schedule of pump operation should be determined and noted for active wells. If the well is capped but not vented, remove the cap and wait several minutes before measurement to allow water levels to equilibrate to atmospheric pressure.

When lowering a graduated steel tape (chalked tape) or electric tape in a well without a sounding tube in an equipped well, the tape should be played out slowly by hand to minimize the chance of the tape end becoming caught in a downhole obstruction. The tape should be held in such a way that any change in tension will be felt. When withdrawing a sounding tape, it should also be brought up slowly so that if an obstruction is encountered, tension can be relaxed so that the tape can be lowered again before attempting to withdraw it around the obstruction.

Despite all precautions, there is a small risk of measuring tapes becoming stuck in equipped wells without dedicated sounding tubes. If a tape becomes stuck, the equipment should be left on-site and re-checked after the well has gone through a few cycles of pumping, which can free the tape due to movement/vibration of the pump column. If the tape remains stuck, a pumping contractor will be needed to retrieve the equipment. A dedicated sounding tube may be installed by the pumping contractor at that time.

All water level measurements should be made to an accuracy of 0.01 feet. The field technician should make at least two measurements. If measurements of static levels do not agree 0.02 feet, the technician should continue measurements until the reason for the disparity is determined, or the measurements are within 0.02 feet.

Record Keeping in the Field

The information recorded in the field is typically the only available reference for the conditions at the time of the monitoring event. During each monitoring event it is important to record any conditions at a well site and its vicinity that may affect groundwater levels, or the field technician's ability to obtain groundwater levels. Table 2 lists important information to record, however, additional information should be included when appropriate.

Table 2
Information Recorded at Each Well Site

Well name	Changes in land use	Presence of oil in well
Name and organization of field technician	Changes in RP	Cascading water
Date & time	Nearby wells in use	Equipment problems
Measurement method used	Weather conditions	Physical changes in wellhead
Sounder used	Recent pumping	Comments

Measurement Techniques

Four standard methods of obtaining water levels are discussed below. The chosen method depends on site and downhole conditions, and the equipment limitations. In all monitoring situations, the procedures and equipment used should be documented in the field notes and in final reporting. Additional detail on methods of water level measurement is included in the reference documents.

Graduated Steel Tape

This method uses a graduated steel tape with a brass or stainless steel weight attached to its end. The tape is graduated in feet. The approximate depth to water should be known prior to measurement.

- Chalk the lower few feet of the tape by applying blue carpenter's chalk.
- Lower the tape to just below the estimated depth to water so that a few feet of the chalked portion of the tape is submerged. Be careful not to lower the tape beyond its chalked length.
- Hold the tape at the RP and record the tape position (this is the "hold" position and should be at an even foot);
- Withdraw the tape rapidly to the surface;
- Record the length of the wetted chalk mark;
- Subtract the wetted chalk number from the "hold" position number and record this number in the "Depth to Water below RP" column;
- Perform a check by repeating the measurement using a different RP hold value;
- All data should be recorded to the nearest 0.01 foot;

• Disinfect the tape by wiping down the submerged portion of the tape with single-use, unscented disinfectant wipe, or let stand for one minute in a dilute chlorine bleach solution and dry with clean cloth.

The graduated steel tape is generally considered to be the most accurate method for measuring static water levels. Measuring water levels in wells with cascading water or with condensing water on the well casing causes potential errors, or can be impossible.

Electric Tape

An electric tape operates on the principle that an electric circuit is completed when two electrodes are submerged in water. Most electric tapes are mounted on a hand-cranked reel equipped with batteries and an ammeter, buzzer or light to indicate when the circuit is closed. Tapes are graduated in either one-foot intervals or in hundredths of feet depending on the manufacturer. Like graduated steel tapes, electric tapes are attached with brass or stainless steel weights.

- Check the circuitry of the tape before lowering the probe into the well by dipping the probe into water and observe if the ammeter needle or buzzer/light signals that the circuit is closed;
- Lower the probe slowly and carefully into the well until the signal indicates that the water surface has been reached;
- Place a finger or thumb on the tape at the RP when the water surface is reached;
- If the tape is graduated in one-foot intervals, partially withdraw the tape and measure the distance from the RP mark to the nearest one-foot mark to obtain the depth to water below the RP. If the tape is graduated in hundredths of a foot, simply record the depth at the RP mark as the depth to water below the RP;
- Make all readings using the same needle deflection point on the ammeter scale (if equipped) so that water levels will be consistent between measurements;
- Make check measurements until agreement shows the results to be reliable;
- All data should be recorded to the nearest 0.01 foot;
- Disinfect the tape by wiping down the submerged portion of the tape with single-use, unscented disinfectant wipe, or let stand for one minute in a dilute chlorine bleach solution and dry with clean cloth;
- Periodically check the tape for breaks in the insulation. Breaks can allow water to enter into the insulation creating electrical shorts that could result in false depth readings.

The electric tape may give slightly less accurate results than the graduated steel tape. Errors can result from signal "noise" in cascading water, breaks in the tape insulation, or tape stretch. All electric tapes should be calibrated semi-annually against a steel tape that is maintained in the office and used only for calibration.

Air Line

The air line method is usually used only in wells equipped with pumps. This method typically uses a 1/8 or 1/4-inch diameter, seamless copper tubing, brass tubing, or galvanized pipe with a suitable pipe tee for connecting an altitude or pressure gage. Plastic tubing may also be used, but is

considered less desirable. An air line must extend far enough below the water level that the lower end remains submerged during pumping of the well. The air line is connected to an altitude gage that reads directly in feet of water, or to a pressure gage that reads pressure in pounds per square inch (psi). The gage reading indicates the length of the submerged air line.

The formula for determining the depth to water below the RP is: $\mathbf{d} = \mathbf{k} - \mathbf{h}$ where $\mathbf{d} = \text{depth}$ to water; $\mathbf{k} = \text{constant}$; and $\mathbf{h} = \text{height}$ of the water displaced from the air line. In wells where a pressure gage is used, \mathbf{h} is equal to 2.31 ft/psi multiplied by the gage reading. The constant value for \mathbf{k} is approximately equivalent to the length of the air line.

- Calibrate the air line by measuring an initial depth to water (d) below the RP with a graduated steel tape. Use a tire pump, air tank, or air compressor to pump compressed air into the air line until all the water is expelled from the line. When all the water is displaced from the line, record the stabilized gage reading (h). Add d to h to determine the constant value for k.
- To measure subsequent depths to water with the air line, expel all the water from the air line, subtract the gage reading (h) from the constant k, and record the result as depth to water (d) below the RP.

The air line method is not as accurate as a graduated steel tape or electric and are typically accurate to the nearest one foot at best. Errors can occur with leaky air lines, or when tubing becomes clogged with mineral deposits or bacterial growth. The air line method is not recommended for use in the Groundwater Monitoring Program.

Pressure Transducer

Electrical pressure transducers make it possible to collect frequent and long-term water level or pressure data from wells. These pressure-sensing devices, installed at a fixed depth in a well, sense the change in pressure against a membrane. The pressure changes occur in response to changes in the height of the water column in the well above the transducer. To compensate for atmospheric changes, transducers may have vented cables or they can be used in conjunction with a barometric transducer that is installed in the same well or a nearby observation well above the water level.

Transducers are selected on the basis of expected water level fluctuation. The smallest range in water levels provides the greatest measurement resolution. Accuracy is generally 0.01 to 0.1 percent of the full scale range.

Retrieving data in the field is typically accomplished by downloading data through a USB connection to a portable computer or data logger. A site visit to retrieve data should involve several steps designed to safeguard the data and the continued useful operation of the transducer:

- Inspect the wellhead and check that the transducer cable has not moved or slipped;
- Ensure that the instrument is operating properly;
- Measure and record the depth to water with a graduated steel or electric tape;
- Document the site visit, including all measurements and any problems;

- Retrieve the data and document the process;
- Review the retrieved data by viewing the file or plotting the original data;
- Recheck the operation of the transducer prior to disconnecting from the computer.

A field notebook with a checklist of steps and measurements should be used to record all field observations and the current data from the transducer. It provides an historical record of field activities. In the office, maintain a binder with field information similar to that recorded on the field notebook so that a general historical record is available there and can be referred to before and after a field trip.

Groundwater Sampling Procedures for the Los Osos BMC Groundwater Monitoring Program

Introduction

This memorandum establishes groundwater sampling procedures for the Los Osos Groundwater Monitoring Program. Groundwater sampling procedures facilitate obtaining a representative groundwater sample from an aquifer for water quality analysis. The water sampling procedures for general mineral and dissolved nitrogen sampling are presented below, along with special procedures for collecting samples for analyzing Constituents of Emerging Concern (CECs).

References

The procedures used for the Groundwater Monitoring Program have been developed through consideration of the constituents of analysis, well construction and type, and a review of the U.S. *EPA Compendium of ERT Groundwater Sampling Procedures*, January 1999, and the U.S. Geological Survey's *National Field Manual for the Collection of Water-Quality Data*, Chapter A3 (revised 2004) and Chapter 6 (2007).

Non-equipped monitoring wells

- 1) Calibrate field monitoring instruments each day prior to sampling;
- 2) Inspect wellhead condition and note any maintenance required (perform at earliest convenience);
- 3) Measure depth to static water (record to 0.01 inches) from surveyed reference point;
- 4) Install temporary purge pump to at least three feet below the water surface (deeper setting may be needed if water level draw down is too great);
- 5) Begin well purge, record flow rate;
- 6) Measure discharge water EC (measured to 10 μmhos/cm), pH (measured to 0.01 units), and temperature (measured to 0.1 degrees C) at regular intervals during well purging. Record time and gallons purged. Note discharge water color, odor, and turbidity (visual);
- A minimum of three casing volumes of water should be removed during purging, or one borehole volume opposite perforated interval, whichever is greater*. In addition, a set of at least three consecutive field monitoring measurements with stable values should be recorded. For EC, stability within 5 percent of the first value in the set is sufficient (typically within 20-50 µmhos/cm). For pH, stability within 0.3 units is sufficient. For temperature, stability within 0.2 degrees C is sufficient;
- 8) Collect sample directly from discharge tube, note sample color, odor, turbidity (visual). Use only laboratory-provided containers. Wear powder-free nitrile gloves when collecting groundwater samples;

- 9) Place samples on-ice for transport to the laboratory;
- 10) Remove temporary pump and rinse with clean water;
- 11) Close well and secure well box lid;

*note: If well is pumped dry at the minimum pumping rate, the well may be allowed to recover and then sampled by bailer within 24 hours.

Equipped wells

The sampling port for an equipped well must be upstream of any water filtration or chemical feeds. Sample from the discharge line as close to the wellhead as possible. Sampling procedures for equipped wells will vary. For active wells (i.e. wells used daily), the need for purging three casing volumes is unnecessary. Flush supply line from well or holding tank to sampling port, and record one set of EC, pH, and temperature readings collected prior to sampling. For inactive wells, a field monitoring procedure similar to that described for non-equipped wells above would be appropriate. Static water level measurements should also be taken before sampling. Water samples should always be transported on-ice to the laboratory.

Groundwater Sampling Equipment Decontamination

Field equipment should be cleaned prior to the sampling event and between sampling locations. Sampling pumps and hand bailers should be brushed with a nylon-bristle brush using a solution of 0.1 to 0.2-percent (volume/volume) non-phosphate soap in municipal-source tap water. The equipment should then be triple-rinsed with deionized water. Purge the pump hose of well water between sampling locations by pumping deionized through the hose. Groundwater sampling equipment should be protected from contact with the ground at all times.

Special procedures for sampling for CEC compounds from unequipped well:

- 1) A new, teflon-lined polyethylene discharge hose or bailer will be used at each unequipped well sampling location;
- 2) The sampling pump will be decontaminated prior to each well sampled:

 Decontamination will consist of brushing pump body, inlet screen, and submerged portion of power cable in a phosphate-free cleaning solution, followed by rinsing, pumping distilled water, and final rinse;
- Personnel collecting the sample will use powder-free nitrile gloves and observe special precautions for testing as directed by the laboratory (such as no caffeinated drink consumption, stand downwind of sampling port during sample collection, double-bag sample bottles, etc.);
- 4) Equipment blanks of distilled water pumped through the sampling pump are recommended:
- 5) A clean water/travel blank of distilled water (from the same source used for pump decontamination) is recommended.

APPENDIX C

Laboratory Analytical Reports for 2015 Lower Aquifer Monitoring

DRAFT

Spring 2015 Analytical Results

May 11, 2015 Lab ID : CC 1581246-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : April 21, 2015-10:00

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : April 21, 2015-16:15

San Luis Obispo, CA 93401 Matrix : Ground Water

: S & T #5 Description LA8 **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	97.5		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	16	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	14	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	2	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	38	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	3.7		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	ND	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	20	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	ND	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	20	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.7				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	40	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Hydroxide as OH	ND	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Carbonate as CO3	ND	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Bicarbonate as HCO3	50	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Sulfate	11	2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Chloride	77	1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate as NO3	33.9	0.5	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrite as N	ND	0.2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate + Nitrite as N	7.7	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Fluoride	ND	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Total Anions	3.8		meq/L		2320B	04/27/15:204887	2320B	04/27/15:206268
pН	6.9		units		4500-H B	04/23/15:204734	4500HB	04/23/15:206085
Specific Conductance	445	1	umhos/cm		2510B	04/23/15:204719	2510B	04/23/15:206051
Total Dissolved Solids	280	20	mg/L		2540CE	04/23/15:204727	2540C	04/24/15:206120
MBAS Screen	Negative	0.1	mg/L		5540C	04/22/15:205092	5540C	04/22/15:206500
Aggressiveness Index	10.1				4500-H B	04/23/15:204734	4500HB	04/23/15:206085
Langelier Index (20°C)	-1.7				4500-H B	04/23/15:204734	4500HB	04/23/15:206085
Nitrate Nitrogen	7.7		mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326

May 11, 2015 Lab ID : CC 1581264-002

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : April 22, 2015-09:20

71 Zaca Lane Sampled By : M. Babb

Suite 140 Received On : April 22, 2015-12:22 : Drinking Water San Luis Obispo, CA 93401 Matrix

Description : GSWC Cabrillo

Project : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onts	WICL/AL	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	117		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	19	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	17	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	2	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	45	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	4.4		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	ND	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L	1000^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	ND	30	ug/L	300^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L	50^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	30	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.8				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	60	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Hydroxide as OH	ND	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Carbonate as CO3	ND	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Bicarbonate as HCO3	70	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Sulfate	16	2	mg/L	500^{2}	300.0	04/23/15:204782	300.0	04/24/15:206137
Chloride	95	1	mg/L	500^{2}	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrate as NO3	24.2	0.5	mg/L	45	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrite as N	ND	0.2	mg/L	1	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrate + Nitrite as N	5.5	0.1	mg/L	10	300.0	04/23/15:204782	300.0	04/24/15:206137
Fluoride	0.1	0.1	mg/L	2	300.0	04/23/15:204782	300.0	04/24/15:206137
Total Anions	4.6		meq/L		2320B	04/27/15:204887	2320B	04/27/15:206268
рН	7.3		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	530	1	umhos/cm	1600^{2}	2510B	04/24/15:204762	2510B	04/24/15:206116
Total Dissolved Solids	320	20	mg/L	1000^{2}	2540CE	04/27/15:204865	2540C	04/28/15:206275
MBAS Extraction	0.1	0.1	mg/L	0.5^{2}	5540C	04/23/15:204758	5540C	04/24/15:206110
Aggressiveness Index	10.8				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	-1.1				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	5.5		mg/L	10	300.0	04/23/15:204782	300.0	04/24/15:206137

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 \$Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

May 11, 2015 Lab ID : CC 1581264-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : April 22, 2015-08:10

71 Zaca Lane Sampled By : M. Babb

Suite 140 Received On : April 22, 2015-12:22

San Luis Obispo, CA 93401 : Drinking Water Matrix : GSWC Rosina Description **LA10**

Project : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	Result	TQL	Omts	NICL/AL	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	431		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	69	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	63	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	2	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	39	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	10.4		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	ND	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L	1000^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	110	30	ug/L	300^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L	50^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	30	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	0.8				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	70	10	mg/L		2320B	04/28/15:204904	2320B	04/28/15:206334
Hydroxide as OH	ND	10	mg/L		2320B	04/28/15:204904	2320B	04/28/15:206334
Carbonate as CO3	ND	10	mg/L		2320B	04/28/15:204904	2320B	04/28/15:206334
Bicarbonate as HCO3	80	10	mg/L		2320B	04/28/15:204904	2320B	04/28/15:206334
Sulfate	20	2	mg/L	500^{2}	300.0	04/23/15:204782	300.0	04/24/15:206137
Chloride	331	5*	mg/L	500^{2}	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrate as NO3	8.3	0.5	mg/L	45	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrite as N	ND	0.2	mg/L	1	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrate + Nitrite as N	1.9	0.1	mg/L	10	300.0	04/23/15:204782	300.0	04/24/15:206137
Fluoride	ND	0.1	mg/L	2	300.0	04/23/15:204782	300.0	04/24/15:206137
Total Anions	11.2		meq/L		2320B	04/28/15:204904	2320B	04/28/15:206334
pН	7.1		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	1230	1	umhos/cm	1600^{2}	2510B	04/24/15:204762	2510B	04/24/15:206116
Total Dissolved Solids	750	20	mg/L	1000^{2}	2540CE	04/27/15:204865	2540C	04/28/15:206275
MBAS Extraction	0.1	0.1	mg/L	0.5^{2}	5540C	04/23/15:204758	5540C	04/24/15:206110
Aggressiveness Index	11.2				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	-0.7				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	1.9		mg/L	10	300.0	04/23/15:204782	300.0	04/24/15:206137

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 ‡Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

May 11, 2015 Lab ID : CC 1581263-001

Customer ID: 8-514

Cleath-Harris Geologists

Sampled On : April 22, 2015-11:10 Attn: Spencer Harris

71 Zaca Lane Sampled By : Bryce Pfeifle

Suite 140 Received On : April 22, 2015-12:22

San Luis Obispo, CA 93401 : Ground Water Matrix

: 30S-10E-12J1 **LA11** Description Project : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesuit	FQL	Omts	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	475		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	65	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	76	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	5	1	mg/L		200.7	04/27/15:204860	200.7	04/29/15:206464
Sodium	88	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	13.5		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	0.3	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	350	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	50	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	ND	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.8				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	300	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Hydroxide as OH	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Carbonate as CO3	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Bicarbonate as HCO3	360	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Sulfate	189	2	mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236
Chloride	112	5*	mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236
Nitrate as NO3	ND	0.5	mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236
Nitrite as N	ND	0.2	mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236
Nitrate + Nitrite as N	ND	0.1	mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236
Fluoride	0.2	0.1	mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236
Total Anions	13.0		meq/L		2320B	04/24/15:204815	2320B	04/24/15:206172
рН	7.8		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	1290	1	umhos/cm		2510B	04/24/15:204762	2510B	04/24/15:206116
Total Dissolved Solids	810	20	mg/L		2540CE	04/27/15:204865	2540C	04/28/15:206275
MBAS Screen	Negative	0.1	mg/L		5540C	04/23/15:204916	5540C	04/23/15:206296
Aggressiveness Index	12.5				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	0.6				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	ND		mg/L		300.0	04/23/15:204882	300.0	04/23/15:206236

May 11, 2015 Lab ID : CC 1581246-003

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : April 21, 2015-15:20

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : April 21, 2015-16:15

San Luis Obispo, CA 93401 Matrix : Ground Water

: LOCSD 8th St. Description **LA12 Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	305		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	48	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	45	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	2	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	59	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	8.7		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	0.2	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	20	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	670	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	40	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	170	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.5				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	240	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Hydroxide as OH	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Carbonate as CO3	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Bicarbonate as HCO3	290	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Sulfate	55	2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Chloride	101	1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate as NO3	ND	0.4	mg/L		4500NO3F	04/29/15:204972	4500NO3F	04/29/15:206391
Nitrite as N	ND	0.2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate + Nitrite as N	ND	0.1	mg/L		4500NO3F	04/29/15:204972	4500NO3F	04/29/15:206391
Fluoride	ND	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Total Anions	8.7		meq/L		2320B	04/24/15:204815	2320B	04/24/15:206172
pН	7.7		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	897	1	umhos/cm		2510B	04/23/15:204719	2510B	04/23/15:206051
Total Dissolved Solids	500	20	mg/L		2540CE	04/23/15:204727	2540C	04/24/15:206120
MBAS Screen	Negative	0.1	mg/L		5540C	04/22/15:205092	5540C	04/22/15:206500
Aggressiveness Index	12.2				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	0.3				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	ND		mg/L		4500NO3F	04/29/15:204972	4500NO3F	04/29/15:206391

May 11, 2015 Lab ID : CC 1581331-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : April 29, 2015-09:38

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : April 29, 2015-10:25

San Luis Obispo, CA 93401 Matrix : Ground Water

: LOCSD Palisades LA15 Description **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	77.7		mg/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Calcium	13	1	mg/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Magnesium	11	1	mg/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Potassium	ND	1	mg/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Sodium	30	1	mg/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Total Cations	2.9		meq/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Boron	ND	0.1	mg/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Copper	30	10	ug/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Iron	1910	30	ug/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Manganese	50	10	ug/L		200.7	05/04/15:205156	200.7	05/04/15:206615
Zinc	70	20	ug/L		200.7	05/04/15:205156	200.7	05/04/15:206615
SAR	1.5				200.7	05/04/15:205156	200.7	05/04/15:206615
Total Alkalinity (as CaCO3)	60	10	mg/L		2320B	05/01/15:205053	2320B	05/01/15:206569
Hydroxide as OH	ND	10	mg/L		2320B	05/01/15:205053	2320B	05/01/15:206569
Carbonate as CO3	ND	10	mg/L		2320B	05/01/15:205053	2320B	05/01/15:206569
Bicarbonate as HCO3	80	10	mg/L		2320B	05/01/15:205053	2320B	05/01/15:206569
Sulfate	10	2	mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507
Chloride	43	1	mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507
Nitrate as NO3	22.0	0.5	mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507
Nitrite as N	ND	0.2	mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507
Nitrate + Nitrite as N	5.0	0.1	mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507
Fluoride	ND	0.1	mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507
Total Anions	3.1		meq/L		2320B	05/01/15:205053	2320B	05/01/15:206569
pН	7.4		units		4500-H B	05/04/15:205152	4500HB	05/04/15:206574
Specific Conductance	348	1	umhos/cm		2510B	05/01/15:205056	2510B	05/01/15:206463
Total Dissolved Solids	230	20	mg/L		2540CE	04/30/15:205028	2540C	05/01/15:206466
MBAS Screen	Negative	0.1	mg/L		5540C	04/30/15:205095	5540C	04/30/15:206506
Aggressiveness Index	10.7				4500-H B	05/04/15:205152	4500HB	05/04/15:206574
Langelier Index (20°C)	-1.1				4500-H B	05/04/15:205152	4500HB	05/04/15:206574
Nitrate Nitrogen	5.0		mg/L		300.0	04/30/15:205076	300.0	04/30/15:206507

May 4, 2015 Lab ID : CC 1581247-002

Customer ID: 8-514

Cleath-Harris Geologists

Sampled On : April 21, 2015-15:40 Attn: Spencer Harris

: Bryce Pfeifle 71 Zaca Lane Sampled By

Received On : April 21, 2015-16:15 Suite 140

San Luis Obispo, CA 93401 Matrix : Ground Water

: 30S/11E-18K8 Description **LA18 Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1}								
Total Hardness as CaCO3	265		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	55	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	31	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	2	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	27	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	6.5		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	ND	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	ND	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	90	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	ND	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	0.7				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	240	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Hydroxide as OH	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Carbonate as CO3	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Bicarbonate as HCO3	290	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Sulfate	39	2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Chloride	33	1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate as NO3	ND	0.5	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrite as N	ND	0.2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate + Nitrite as N	ND	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Fluoride	0.2	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Total Anions	6.5		meq/L		2320B	04/24/15:204815	2320B	04/24/15:206172
рН	7.7		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	634	1	umhos/cm		2510B	04/23/15:204719	2510B	04/23/15:206051
Total Dissolved Solids	400	20	mg/L		2540CE	04/23/15:204727	2540C	04/24/15:206120
MBAS Screen	Negative	0.1	mg/L		5540C	04/22/15:205092	5540C	04/22/15:206500
Aggressiveness Index	12.2				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	0.4				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	ND		mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326

May 11, 2015 Lab ID : CC 1581264-003

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : April 22, 2015-10:20

71 Zaca Lane Sampled By : M. Babb

Suite 140 Received On : April 22, 2015-12:22 : Drinking Water San Luis Obispo, CA 93401 Matrix

: GSWC So. Bay #1 LA20 Description

Project : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onts	WICL/AL	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	234		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	36	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	35	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	2	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	42	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	6.6		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	0.1	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L	1000^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	ND	30	ug/L	300^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L	50^{2}	200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	ND	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.2				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	240	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Hydroxide as OH	ND	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Carbonate as CO3	ND	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Bicarbonate as HCO3	290	10	mg/L		2320B	04/27/15:204887	2320B	04/27/15:206268
Sulfate	27	2	mg/L	500^{2}	300.0	04/23/15:204782	300.0	04/24/15:206137
Chloride	43	1	mg/L	500^{2}	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrate as NO3	2.5	0.5	mg/L	45	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrite as N	ND	0.2	mg/L	1	300.0	04/23/15:204782	300.0	04/24/15:206137
Nitrate + Nitrite as N	0.6	0.1	mg/L	10	300.0	04/23/15:204782	300.0	04/24/15:206137
Fluoride	0.2	0.1	mg/L	2	300.0	04/23/15:204782	300.0	04/24/15:206137
Total Anions	6.6		meq/L		2320B	04/27/15:204887	2320B	04/27/15:206268
рH	7.4		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	653	1	umhos/cm	1600^{2}	2510B	04/24/15:204762	2510B	04/24/15:206116
Total Dissolved Solids	360	20	mg/L	1000^{2}	2540CE	04/27/15:204865	2540C	04/28/15:206275
MBAS Extraction	ND	0.1	mg/L	0.5^{2}	5540C	04/23/15:204758	5540C	04/24/15:206110
Aggressiveness Index	11.7				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	-0.1				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	0.6		mg/L	10	300.0	04/23/15:204782	300.0	04/24/15:206137

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2 \$Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

May 4, 2015 Lab ID : CC 1581247-001

Customer ID: 8-514

Cleath-Harris Geologists

Sampled On : April 21, 2015-11:30 Attn: Spencer Harris

: Bryce Pfeifle 71 Zaca Lane Sampled By

Received On : April 21, 2015-16:15 Suite 140

San Luis Obispo, CA 93401 Matrix : Ground Water

: 30S/11E-17E8 LA22 Description **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1}								
Total Hardness as CaCO3	157		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	25	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	23	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	1	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	28	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	4.4		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	ND	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	ND	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	ND	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.0				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	120	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Hydroxide as OH	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Carbonate as CO3	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Bicarbonate as HCO3	150	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Sulfate	13	2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Chloride	49	1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate as NO3	31.4	0.5	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrite as N	ND	0.2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate + Nitrite as N	7.1	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Fluoride	ND	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Total Anions	4.6		meq/L		2320B	04/24/15:204815	2320B	04/24/15:206172
pН	7.6		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	481	1	umhos/cm		2510B	04/23/15:204719	2510B	04/23/15:206051
Total Dissolved Solids	270	20	mg/L		2540CE	04/23/15:204727	2540C	04/24/15:206120
MBAS Screen	Negative	0.1	mg/L		5540C	04/22/15:205092	5540C	04/22/15:206500
Aggressiveness Index	11.5				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	-0.4				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	7.1		mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326

May 11, 2015 Lab ID : CC 1581246-002

Customer ID: 8-514

Cleath-Harris Geologists

Sampled On : April 21, 2015-10:55 Attn: Spencer Harris

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : April 21, 2015-16:15 : Ground Water

San Luis Obispo, CA 93401 : 30S / 10E-13M2 Description **Project** : SWI Monitoring

Sample Result - Inorganic

Matrix

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesuit	FQL	Ollits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	739		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	113	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	111	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	5	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	378	2*	mg/L		200.7	04/27/15:204860	200.7	04/29/15:206464
Total Cations	31.3		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	0.2	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	ND	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	ND	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	6.0				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	50	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Hydroxide as OH	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Carbonate as CO3	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Bicarbonate as HCO3	60	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Sulfate	180	2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Chloride	950	10*	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate as NO3	2.4	0.5	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrite as N	ND	0.2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate + Nitrite as N	0.5	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Fluoride	ND	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Total Anions	31.6		meq/L		2320B	04/24/15:204815	2320B	04/24/15:206172
рН	7.3		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	3430	1	umhos/cm		2510B	04/23/15:204719	2510B	04/23/15:206051
Total Dissolved Solids	1930	20	mg/L		2540CE	04/23/15:204727	2540C	04/24/15:206120
MBAS Screen	Negative	0.1	mg/L		5540C	04/22/15:205092	5540C	04/22/15:206500
Aggressiveness Index	11.4				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	-0.5				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	0.5		mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326

May 11, 2015 Lab ID : CC 1581246-004

Customer ID: 8-514

Cleath-Harris Geologists

Sampled On : April 21, 2015-15:30 Attn: Spencer Harris

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : April 21, 2015-16:15 : Ground Water

San Luis Obispo, CA 93401 Matrix : LOCSD 10th St. Description **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesuit	FQL	Omts	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	108		mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Calcium	17	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Magnesium	16	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Potassium	1	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Sodium	27	1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Total Cations	3.4		meq/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Boron	ND	0.1	mg/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Copper	20	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Iron	130	30	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Manganese	ND	10	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
Zinc	ND	20	ug/L		200.7	04/27/15:204860	200.7	04/27/15:206270
SAR	1.1				200.7	04/27/15:204860	200.7	04/27/15:206270
Total Alkalinity (as CaCO3)	160	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Hydroxide as OH	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Carbonate as CO3	ND	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Bicarbonate as HCO3	190	10	mg/L		2320B	04/24/15:204815	2320B	04/24/15:206172
Sulfate	20	2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Chloride	38	1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate as NO3	7.0	0.5	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrite as N	ND	0.2	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Nitrate + Nitrite as N	1.6	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Fluoride	0.1	0.1	mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326
Total Anions	4.7		meq/L		2320B	04/24/15:204815	2320B	04/24/15:206172
рН	7.6		units		4500-H B		4500HB	04/24/15:206141
Specific Conductance	504	1	umhos/cm		2510B	04/23/15:204719	2510B	04/23/15:206051
Total Dissolved Solids	270	20	mg/L		2540CE	04/23/15:204727	2540C	04/24/15:206120
MBAS Screen	Negative	0.1	mg/L		5540C	04/22/15:205092	5540C	04/22/15:206500
Aggressiveness Index	11.4				4500-H B		4500HB	04/24/15:206141
Langelier Index (20°C)	-0.4				4500-H B		4500HB	04/24/15:206141
Nitrate Nitrogen	1.6		mg/L		300.0	04/22/15:204880	300.0	04/22/15:206326

DRAFT

Fall 2015 Analytical Results

November 12, 2015 Lab ID : CC 1583625-002

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 21, 2015-17:54

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : October 22, 2015-11:29

San Luis Obispo, CA 93401 : Ground Water Matrix

: 30S/10E-11A2 Description LA2 **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	TQL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	6640		mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Calcium	1030	2*	mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Magnesium	990	10*	mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Potassium	31	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Sodium	1560	10*	mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Total Cations	202		meq/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Boron	ND	0.1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Copper	20	10	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Iron	230	30	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Manganese	330	10	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Zinc	20	20	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
SAR	8.3				200.7	10/26/15:212471	200.7	10/26/15:215683
Total Alkalinity (as CaCO3)	130	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Hydroxide as OH	ND	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Carbonate as CO3	ND	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Bicarbonate as HCO3	150	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Sulfate	740	20*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Chloride	6300	100*	mg/L		300.0	11/03/15:212886	300.0	11/04/15:216003
Nitrate as NO3	ND	5*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Nitrite as N	ND	2*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Nitrate + Nitrite as N	ND	1*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Fluoride	ND	1*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Total Anions	196		meq/L		2320B	10/26/15:212454	2320B	10/26/15:215660
pН	7.4		units		4500-H B	10/23/15:212425	4500HB	10/23/15:215546
Specific Conductance	17700	1	umhos/cm		2510B	10/26/15:212463	2510B	10/26/15:215609
Total Dissolved Solids	13100	20*	mg/L		2540CE	10/23/15:212401	2540C	10/26/15:215607
MBAS Screen	Negative	0.1	mg/L		5540C	10/23/15:212607	5540C	10/23/15:215780
Aggressiveness Index	12.9				4500-H B	10/23/15:212425	4500HB	10/23/15:215546
Langelier Index (20°C)	0.9				4500-H B	10/23/15:212425	4500HB	10/23/15:215546
Nitrate Nitrogen	ND		mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573

November 12, 2015 Lab ID : CC 1583625-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 21, 2015-16:25

: Spencer Harris 71 Zaca Lane Sampled By

Suite 140 Received On : October 22, 2015-11:29

San Luis Obispo, CA 93401 : Ground Water Matrix

Description **Project** : SWI Monitoring

: 30S/10E-14B2

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Sampl	le Analysis
	Kesuit	FQL	Ollits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	7140		mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Calcium	2830	10*	mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Magnesium	20	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Potassium	80	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Sodium	4040	10*	mg/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Total Cations	321		meq/L		200.7	10/26/15:212471	200.7	10/26/15:215683
Boron	ND	0.1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Copper	370	10	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Iron	480	30	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Manganese	10	10	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Zinc	350	20	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
SAR	20.8				200.7	10/26/15:212471	200.7	10/26/15:215683
Total Alkalinity (as CaCO3)	360	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Hydroxide as OH	40	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Carbonate as CO3	140	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Bicarbonate as HCO3	ND	10	mg/L		2320B	10/26/15:212454	2320B	10/26/15:215660
Sulfate	530	50*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Chloride	10000	100*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Nitrate as NO3	ND	12*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Nitrite as N	ND	4*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Nitrate + Nitrite as N	ND	3*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Fluoride	ND	2.5*	mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573
Total Anions	300		meq/L		2320B	10/26/15:212454	2320B	10/26/15:215660
pН	11.0		units		4500-H B	11/02/15:212792	4500HB	11/02/15:216012
Specific Conductance	29500	1	umhos/cm		2510B	10/26/15:212463	2510B	10/26/15:215609
Total Dissolved Solids	24700	20*	mg/L		2540CE	10/23/15:212401	2540C	10/26/15:215607
MBAS Screen	Negative	0.1	mg/L		5540C	10/23/15:212607	5540C	10/23/15:215780
Aggressiveness Index	17.4				4500-H B	11/02/15:212792	4500HB	11/02/15:216012
Langelier Index (20°C)	5.3				4500-H B	11/02/15:212792	4500HB	11/02/15:216012
Nitrate Nitrogen	ND		mg/L		300.0	10/23/15:212461	300.0	10/23/15:215573

October 21, 2015 Lab ID : CC 1583447-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 6, 2015-10:30 71 Zaca Lane : Spencer Harris Sr. Sampled By Suite 140 Received On : October 6, 2015-15:04

San Luis Obispo, CA 93401 : Ground Water Matrix

: S&T #5 Description LA8 **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note Sample Preparation Method Date/ID 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211791 2320B 10/08/15:211719 2320B 10/08/15:211719 2320B 10/08/15:211719 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775		Samp	le Analysis	
	Kesuit	FQL	Ollits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	97.5		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	16	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	14	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	1	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	38	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Total Cations	3.6		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	ND	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	ND	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	ND	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	1.7				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	40	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Hydroxide as OH	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Carbonate as CO3	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Bicarbonate as HCO3	40	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Sulfate	10	2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Chloride	75	1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate as NO3	30.0	0.5	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrite as N	ND	0.2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate + Nitrite as N	6.8	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Fluoride	ND	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Total Anions	3.5		meq/L		2320B	10/08/15:211719	2320B	10/08/15:214738
рН	7.2		units		4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Specific Conductance	422	1	umhos/cm		2510B	10/08/15:211754	2510B	10/08/15:214696
Total Dissolved Solids	310	20	mg/L		2540CE	10/07/15:211713	2540C	10/08/15:214673
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	10.4				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Langelier Index (20°C)	-1.4				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Nitrate Nitrogen	6.8		mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724

October 12, 2015 Lab ID : CC 1583413-002

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 5, 2015-11:30

Sampled By : BABB 71 Zaca Lane

Suite 140 Received On : October 5, 2015-14:40

San Luis Obispo, CA 93401 : Ground Water Matrix

: GSWC Cabrillo Description **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	75.2		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	12	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	11	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	1	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	34	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Total Cations	3.0		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	ND	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	100	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	ND	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	1.7				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	40	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Hydroxide as OH	ND	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Carbonate as CO3	ND	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Bicarbonate as HCO3	50	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Sulfate	7	2	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Chloride	50	1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrate as NO3	33.4	0.5	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrite as N	ND	0.2	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrate + Nitrite as N	7.6	0.1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Fluoride	ND	0.1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Total Anions	2.9		meq/L		2320B	10/07/15:211656	2320B	10/07/15:214661
pН	7.5		units		4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Specific Conductance	349	1	umhos/cm		2510B	10/07/15:211681	2510B	10/07/15:214601
Total Dissolved Solids	270	20	mg/L		2540CE	10/06/15:211644	2540C	10/07/15:214592
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	10.6				4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Langelier Index (20°C)	-1.3				4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Nitrate Nitrogen	7.6		mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543

October 12, 2015 Lab ID : CC 1583413-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 5, 2015-10:30

Sampled By : BABB 71 Zaca Lane

LA10

Suite 140 Received On : October 5, 2015-14:40

San Luis Obispo, CA 93401 : Ground Water Matrix

: GSWC Rosina Description **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	460		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	74	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	67	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	2	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	41	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Total Cations	11.0		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	ND	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	120	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	20	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	0.8				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	60	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Hydroxide as OH	ND	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Carbonate as CO3	ND	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Bicarbonate as HCO3	70	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Sulfate	19	2	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Chloride	329	5*	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrate as NO3	7.3	0.5	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrite as N	ND	0.2	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrate + Nitrite as N	1.7	0.1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Fluoride	ND	0.1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Total Anions	10.9		meq/L		2320B	10/07/15:211656	2320B	10/07/15:214661
pН	7.0		units		4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Specific Conductance	1280	1	umhos/cm		2510B	10/07/15:211681	2510B	10/07/15:214601
Total Dissolved Solids	950	20	mg/L		2540CE	10/06/15:211644	2540C	10/07/15:214592
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	11.0				4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Langelier Index (20°C)	-0.9				4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Nitrate Nitrogen	1.7		mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543

October 8, 2015 Lab ID : CC 1583394-001

Customer ID: 8-514

: Ground Water

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 1, 2015-15:28 71 Zaca Lane : Spencer B. Harris, J Sampled By Suite 140 Received On : October 1, 2015-15:56

San Luis Obispo, CA 93401

: 30S10E12J1 Description **LA11**

Project : SWI Monitoring

Sample Result - Inorganic

Matrix

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	FQL	Ollits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	486		mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Calcium	68	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Magnesium	77	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Potassium	4	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Sodium	85	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Total Cations	13.5		meq/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Boron	0.3	0.1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Copper	ND	10	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Iron	240	30	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Manganese	40	10	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Zinc	ND	20	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
SAR	1.7				200.7	10/04/15:211536	200.7	10/04/15:214436
Total Alkalinity (as CaCO3)	200	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Hydroxide as OH	ND	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Carbonate as CO3	ND	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Bicarbonate as HCO3	250	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Sulfate	188	2	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Chloride	117	5*	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Nitrate as NO3	ND	0.5	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Nitrite as N	ND	0.2	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Nitrate + Nitrite as N	ND	0.1	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Fluoride	0.1	0.1	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Total Anions	11.3		meq/L		2320B	10/05/15:211539	2320B	10/05/15:214515
рН	7.3		units		4500-H B	10/05/15:211574	4500HB	10/05/15:214482
Specific Conductance	1280	1	umhos/cm		2510B	10/05/15:211552	2510B	10/05/15:214451
Total Dissolved Solids	840	20	mg/L		2540CE	10/02/15:211488	2540C	10/05/15:214453
MBAS Screen	Negative	0.1	mg/L		5540C	10/02/15:211708	5540C	10/02/15:214637
Aggressiveness Index	11.8				4500-H B	10/05/15:211574	4500HB	10/05/15:214482
Langelier Index (20°C)	-0.06				4500-H B	10/05/15:211574	4500HB	10/05/15:214482
Nitrate Nitrogen	ND		mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465

October 21, 2015 Lab ID : CC 1583447-003

Customer ID: 8-514

: Ground Water

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 6, 2015-11:05 : Spencer Harris Sr. 71 Zaca Lane Sampled By Suite 140 Received On : October 6, 2015-15:04

San Luis Obispo, CA 93401

: LOCSD 8th St. Description **LA12**

Project : SWI Monitoring

Sample Result - Inorganic

Matrix

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	298		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	47	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	44	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	2	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	55	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Total Cations	8.4		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	0.2	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	180	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	50	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	ND	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	1.4				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	230	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Hydroxide as OH	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Carbonate as CO3	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Bicarbonate as HCO3	280	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Sulfate	46	2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Chloride	91	1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate as NO3	ND	0.5	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrite as N	ND	0.2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate + Nitrite as N	ND	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Fluoride	ND	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Total Anions	8.1		meq/L		2320B	10/08/15:211719	2320B	10/08/15:214738
pН	7.4		units		4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Specific Conductance	828	1	umhos/cm		2510B	10/08/15:211754	2510B	10/08/15:214696
Total Dissolved Solids	490	20	mg/L		2540CE	10/07/15:211713	2540C	10/08/15:214673
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	11.8				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Langelier Index (20°C)	-0.03				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Nitrate Nitrogen	ND		mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724

November 12, 2015 Lab ID : CC 1583679-001

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 28, 2015-08:02

Sampled By : Spencer Harris 71 Zaca Lane

Suite 140 Received On : October 28, 2015-09:20

San Luis Obispo, CA 93401 : Ground Water Matrix

: 30S/11E-18L2 Description LA15 **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	288		mg/L		200.7	10/29/15:212664	200.7	10/30/15:215962
Calcium	46	1	mg/L		200.7	10/29/15:212664	200.7	10/30/15:215962
Magnesium	42	1	mg/L		200.7	10/29/15:212664	200.7	10/30/15:215962
Potassium	ND	1	mg/L		200.7	10/29/15:212664	200.7	10/29/15:215888
Sodium	36	1	mg/L		200.7	10/29/15:212664	200.7	10/29/15:215888
Total Cations	7.3		meq/L		200.7	10/29/15:212664	200.7	10/30/15:215962
Boron	ND	0.1	mg/L		200.7	10/29/15:212664	200.7	10/30/15:215962
Copper	ND	10	ug/L		200.7	10/29/15:212664	200.7	10/29/15:215888
Iron	ND	30	ug/L		200.7	10/29/15:212664	200.7	10/29/15:215888
Manganese	ND	10	ug/L		200.7	10/29/15:212664	200.7	10/29/15:215888
Zinc	ND	20	ug/L		200.7	10/29/15:212664	200.7	10/29/15:215888
SAR	0.9				200.7	10/29/15:212664	200.7	10/30/15:215962
Total Alkalinity (as CaCO3)	190	10	mg/L		2320B	10/30/15:212694	2320B	10/30/15:215900
Hydroxide as OH	ND	10	mg/L		2320B	10/30/15:212694	2320B	10/30/15:215900
Carbonate as CO3	ND	10	mg/L		2320B	10/30/15:212694	2320B	10/30/15:215900
Bicarbonate as HCO3	230	10	mg/L		2320B	10/30/15:212694	2320B	10/30/15:215900
Sulfate	29	2	mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907
Chloride	104	1	mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907
Nitrate as NO3	2.8	0.5	mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907
Nitrite as N	ND	0.2	mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907
Nitrate + Nitrite as N	0.6	0.1	mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907
Fluoride	ND	0.1	mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907
Total Anions	7.4		meq/L		2320B	10/30/15:212694	2320B	10/30/15:215900
рН	6.8		units		4500-H B	10/30/15:212696	4500HB	10/30/15:215889
Specific Conductance	782	1	umhos/cm		2510B	10/30/15:212695	2510B	10/30/15:215884
Total Dissolved Solids	420	20	mg/L		2540CE	10/30/15:212700	2540C	11/02/15:215964
MBAS Screen	Negative	0.1	mg/L		5540C	10/30/15:213196	5540C	10/30/15:216486
Aggressiveness Index	11.1				4500-H B	10/30/15:212696	4500HB	10/30/15:215889
Langelier Index (20°C)	-0.7				4500-H B	10/30/15:212696	4500HB	10/30/15:215889
Nitrate Nitrogen	0.6		mg/L		300.0	10/29/15:212716	300.0	10/29/15:215907

October 29, 2015 Lab ID : CC 1583566-001

Customer ID: 8-514

: Ground Water

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 19, 2015-12:56 : Spencer B. Harris, J 71 Zaca Lane Sampled By Suite 140 Received On : October 19, 2015-14:00

San Luis Obispo, CA 93401

: 30/11E-18K08 Description

Project : SWI Monitoring

Sample Result - Inorganic

Matrix

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	256		mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Calcium	53	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Magnesium	30	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Potassium	2	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Sodium	26	1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Total Cations	6.3		meq/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Boron	ND	0.1	mg/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Copper	ND	10	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Iron	ND	30	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Manganese	80	10	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
Zinc	ND	20	ug/L		200.7	10/23/15:212423	200.7	10/23/15:215578
SAR	0.7				200.7	10/23/15:212423	200.7	10/23/15:215578
Total Alkalinity (as CaCO3)	190	10	mg/L		2320B	10/21/15:212263	2320B	10/21/15:215348
Hydroxide as OH	ND	10	mg/L		2320B	10/21/15:212263	2320B	10/21/15:215348
Carbonate as CO3	ND	10	mg/L		2320B	10/21/15:212263	2320B	10/21/15:215348
Bicarbonate as HCO3	230	10	mg/L		2320B	10/21/15:212263	2320B	10/21/15:215348
Sulfate	33	2	mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369
Chloride	29	1	mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369
Nitrate as NO3	ND	0.5	mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369
Nitrite as N	ND	0.2	mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369
Nitrate + Nitrite as N	ND	0.1	mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369
Fluoride	0.2	0.1	mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369
Total Anions	5.3		meq/L		2320B	10/21/15:212263	2320B	10/21/15:215348
pH	7.3		units		4500-H B	10/21/15:212305	4500HB	10/21/15:215394
Specific Conductance	621	1	umhos/cm		2510B	10/21/15:212279	2510B	10/21/15:215363
Total Dissolved Solids	370	20	mg/L		2540CE	10/21/15:212301	2540C	10/22/15:215439
MBAS Screen	Negative	0.1	mg/L		5540C	10/20/15:212297	5540C	10/20/15:215384
Aggressiveness Index	11.7				4500-H B	10/21/15:212305	4500HB	10/21/15:215394
Langelier Index (20°C)	-0.2				4500-H B	10/21/15:212305	4500HB	10/21/15:215394
Nitrate Nitrogen	ND		mg/L		300.0	10/20/15:212274	300.0	10/20/15:215369

October 12, 2015 Lab ID : CC 1583413-003

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 5, 2015-11:10

Sampled By : BABB 71 Zaca Lane

Suite 140 Received On : October 5, 2015-14:40

San Luis Obispo, CA 93401 : Ground Water Matrix

: GSWC So. Bay #1 Description **LA20 Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	227		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	35	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	34	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	2	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	41	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Total Cations	6.4		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	0.1	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	ND	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	ND	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	1.2				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	230	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Hydroxide as OH	ND	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Carbonate as CO3	ND	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Bicarbonate as HCO3	280	10	mg/L		2320B	10/07/15:211656	2320B	10/07/15:214661
Sulfate	23	2	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Chloride	38	1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrate as NO3	2.4	0.5	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrite as N	ND	0.2	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Nitrate + Nitrite as N	0.5	0.1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Fluoride	0.2	0.1	mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543
Total Anions	6.2		meq/L		2320B	10/07/15:211656	2320B	10/07/15:214661
pH	7.2		units		4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Specific Conductance	614	1	umhos/cm		2510B	10/07/15:211681	2510B	10/07/15:214601
Total Dissolved Solids	370	20	mg/L		2540CE	10/06/15:211644	2540C	10/07/15:214592
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	11.5				4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Langelier Index (20°C)	-0.3				4500-H B	10/07/15:211692	4500HB	10/07/15:214625
Nitrate Nitrogen	0.5		mg/L		300.0	10/06/15:211663	300.0	10/06/15:214543

October 8, 2015 Lab ID : CC 1583394-002

Customer ID: 8-514

: Ground Water

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 1, 2015-13:23 : Spencer B. Harris, J 71 Zaca Lane Sampled By Suite 140 Received On : October 1, 2015-15:56

San Luis Obispo, CA 93401

: 30S11E17E8 Description **LA22**

Project : SWI Monitoring

Sample Result - Inorganic

Matrix

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	164		mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Calcium	26	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Magnesium	24	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Potassium	1	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Sodium	28	1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Total Cations	4.5		meq/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Boron	ND	0.1	mg/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Copper	ND	10	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Iron	ND	30	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Manganese	ND	10	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
Zinc	ND	20	ug/L		200.7	10/04/15:211536	200.7	10/04/15:214436
SAR	1.0				200.7	10/04/15:211536	200.7	10/04/15:214436
Total Alkalinity (as CaCO3)	100	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Hydroxide as OH	ND	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Carbonate as CO3	ND	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Bicarbonate as HCO3	120	10	mg/L		2320B	10/05/15:211539	2320B	10/05/15:214515
Sulfate	10	2	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Chloride	44	1	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Nitrate as NO3	29.2	0.5	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Nitrite as N	ND	0.2	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Nitrate + Nitrite as N	6.6	0.1	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Fluoride	ND	0.1	mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465
Total Anions	3.9		meq/L		2320B	10/05/15:211539	2320B	10/05/15:214515
pH	7.4		units		4500-H B	10/05/15:211574	4500HB	10/05/15:214482
Specific Conductance	475	1	umhos/cm		2510B	10/05/15:211552	2510B	10/05/15:214451
Total Dissolved Solids	290	20	mg/L		2540CE	10/02/15:211488	2540C	10/05/15:214453
MBAS Screen	Negative	0.1	mg/L		5540C	10/02/15:211708	5540C	10/02/15:214637
Aggressiveness Index	11.2				4500-H B	10/05/15:211574	4500HB	10/05/15:214482
Langelier Index (20°C)	-0.6				4500-H B	10/05/15:211574	4500HB	10/05/15:214482
Nitrate Nitrogen	6.6		mg/L		300.0	10/02/15:211553	300.0	10/02/15:214465

October 21, 2015 Lab ID : CC 1583447-002

Customer ID: 8-514

Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 6, 2015-10:49 : Spencer Harris Sr. 71 Zaca Lane Sampled By Suite 140 Received On : October 6, 2015-15:04

San Luis Obispo, CA 93401 Matrix : Ground Water

: LOCSD 10th St. Description **Project** : SWI Monitoring

Sample Result - Inorganic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	1 QL	Onits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	62.0		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	10	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	9	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	ND	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	21	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Total Cations	2.2		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	ND	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	100	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	ND	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	1.2				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	40	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Hydroxide as OH	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Carbonate as CO3	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Bicarbonate as HCO3	50	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Sulfate	3	2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Chloride	31	1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate as NO3	26.2	0.5	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrite as N	ND	0.2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate + Nitrite as N	5.9	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Fluoride	ND	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Total Anions	2.2		meq/L		2320B	10/08/15:211719	2320B	10/08/15:214738
pН	7.2		units		4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Specific Conductance	248	1	umhos/cm		2510B	10/08/15:211754	2510B	10/08/15:214696
Total Dissolved Solids	190	20	mg/L		2540CE	10/07/15:211713	2540C	10/08/15:214673
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	10.2				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Langelier Index (20°C)	-1.6				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Nitrate Nitrogen	5.9		mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724

October 21, 2015 Lab ID : CC 1583447-004

Customer ID: 8-514

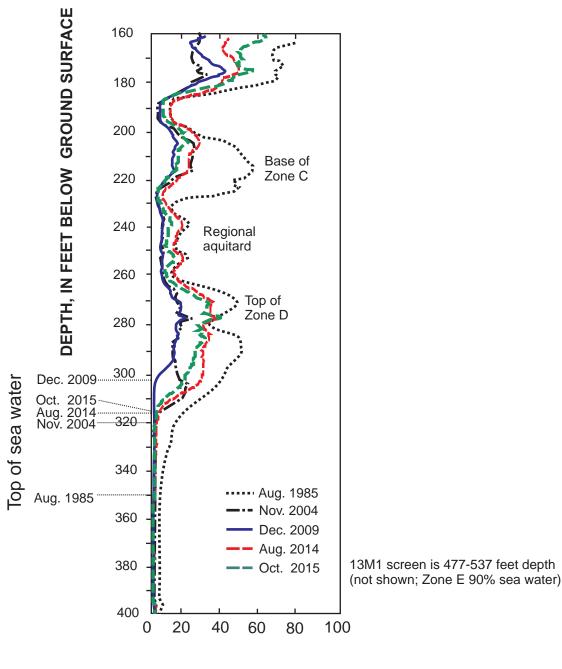
Cleath-Harris Geologists

Attn: Spencer Harris Sampled On : October 6, 2015-11:33 71 Zaca Lane : Spencer Harris Sr. Sampled By Suite 140 Received On : October 6, 2015-15:04

San Luis Obispo, CA 93401 : Ground Water Matrix

: 30S/10E - 13M2 Description **Project** : SWI Monitoring

Sample Result - Inorganic


Constituent	Result	PQL	Units	Note Sample Preparation Date/ID 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211691 200.7 10/07/15:211719 2320B 10/08/15:211719 2320B 10/08/15:211719 2320B 10/08/15:211719 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775 300.0 10/07/15:211775		Samp	le Analysis	
	Kesuit	FQL	Ollits	Note	Method	Date/ID	Method	Date/ID
General Mineral ^{P:1'5}								
Total Hardness as CaCO3	756		mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Calcium	115	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Magnesium	114	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Potassium	5	1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Sodium	342	1	mg/L		200.7	10/08/15:211743	200.7	10/08/15:214704
Total Cations	30.1		meq/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Boron	0.2	0.1	mg/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Copper	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Iron	ND	30	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Manganese	ND	10	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
Zinc	ND	20	ug/L		200.7	10/07/15:211691	200.7	10/07/15:214667
SAR	5.4				200.7	10/07/15:211691	200.7	10/07/15:214667
Total Alkalinity (as CaCO3)	30	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Hydroxide as OH	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Carbonate as CO3	ND	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Bicarbonate as HCO3	30	10	mg/L		2320B	10/08/15:211719	2320B	10/08/15:214738
Sulfate	185	2	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Chloride	960	10*	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate as NO3	2.4	0.5	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrite as N	ND	2*	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Nitrate + Nitrite as N	0.5	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Fluoride	ND	0.1	mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724
Total Anions	31.5		meq/L		2320B	10/08/15:211719	2320B	10/08/15:214738
pН	7.1		units		4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Specific Conductance	3370	1	umhos/cm		2510B	10/08/15:211754	2510B	10/08/15:214696
Total Dissolved Solids	2140	20	mg/L		2540CE	10/07/15:211713	2540C	10/08/15:214673
MBAS Screen	Negative	0.1	mg/L		5540C	10/07/15:211834	5540C	10/07/15:214789
Aggressiveness Index	11.0				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Langelier Index (20°C)	-0.9				4500-H B	10/08/15:211767	4500HB	10/08/15:214714
Nitrate Nitrogen	0.5		mg/L		300.0	10/07/15:211775	300.0	10/08/15:214724

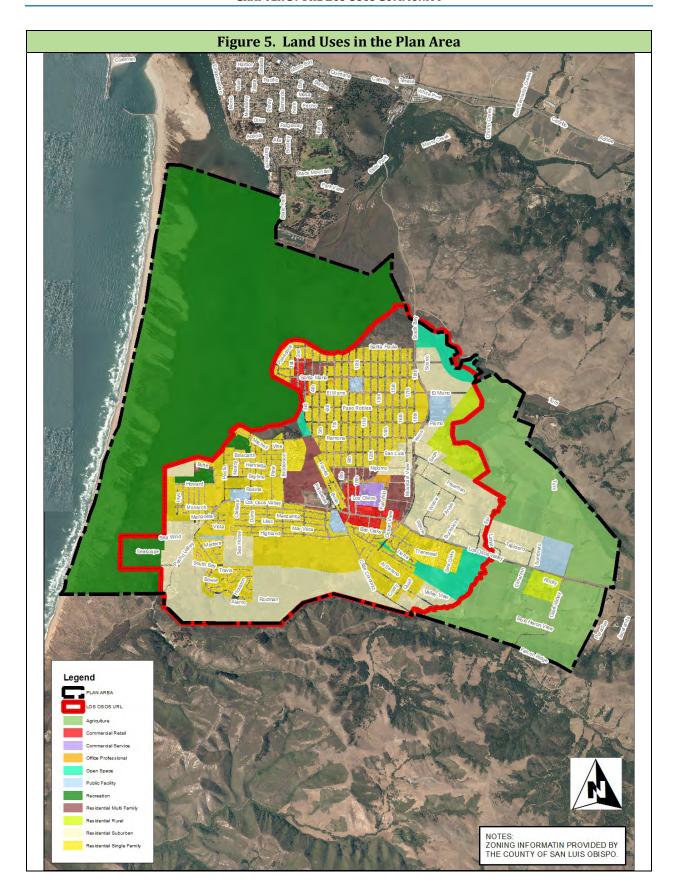
DRAFT

APPENDIX D

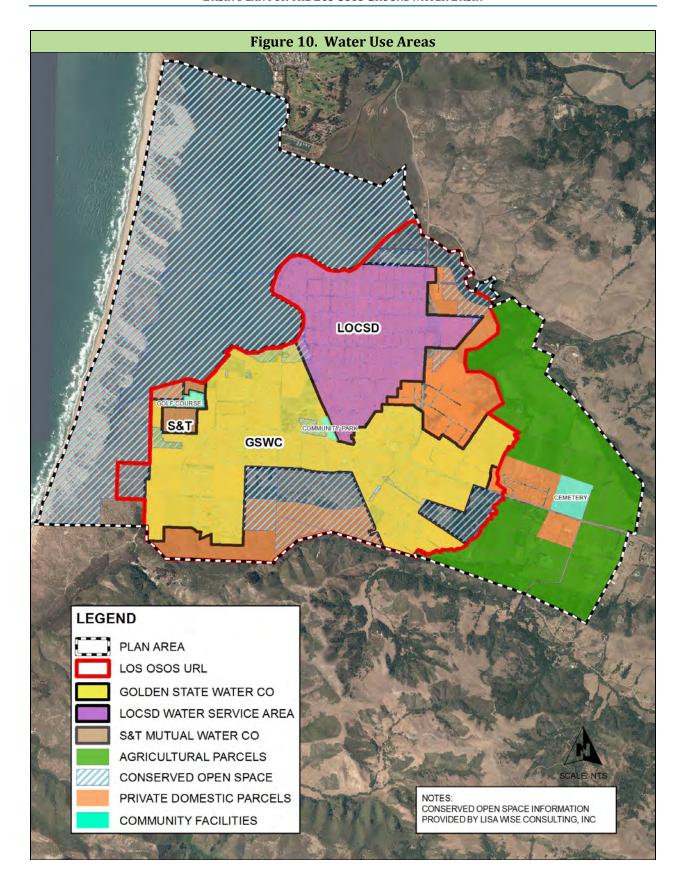
Geophysics at Well 30S/10E-13M1 (from CHG, 2015b)

Well 30S/10E-13M1

RESISTIVITY, IN OHM-METERS


Figure 3
Geophysical Log Comparison at 30S/10E-13M1
October 2015
Lower Aquifer Monitoring
Los Osos ISJ

Cleath-Harris Geologists


DRAFT

APPENDIX E

Land Use and Water Use Areas (from Basin Plan)

JANUARY 2015 27

34 JANUARY 2015

DRAFT

APPENDIX F

Precipitation and Streamflow Data

DRAFT

San Luis Obispo County Public Works Recording Rain Station MONTHLY PRECIPITATION REPORT

Station Name - Los Osos Landfill #727

Station Location -

Latitude - 35° 19' 19" **Longitude -** 120° 48' 03"

Description - Northeast Los Osos South of Turri Road

Water Years -

Beginning - 2005-2006 **Ending -** 2015-2016

Station Statistics -

Month	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	TOTAL
Minimum	0.00	0.00	0.00	0.00	0.04	0.12	0.00	0.35	0.00	0.20	0.00	0.00	6.81
Average	0.18	0.03	0.08	1.01	0.81	2.96	3.46	2.60	1.95	1.06	0.37	0.15	14.67
Maximum	1.93	0.20	0.63	6.22	2.17	11.46	10.47	4.61	8.03	3.70	2.64	1.10	31.77

Notes -

Earlier data may be available. Contact Public Works for more information.

San Luis Obispo County Public Works Recording Rain Station MONTHLY PRECIPITATION REPORT

Station Name and no. Los Osos Landfill #727 *** All units are in inches ***

Station Name a	tion Name and no. Los Osos Landinii # 727												
Water Year	JUL	AUG	SEP	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Total
2015-2016	1.93	0.00	0.08	0.08	1.26	1.85	5.04	0.86					
2014-2015	0.00	0.00	0.00	0.00	0.28	5.20	0.08	0.91	0.43	0.67	0.12	0.00	7.68
2013-2014	0.00	0.00	0.00	0.24	0.28	0.12	0.00	4.06	1.42	0.71	0.00	0.00	6.81
2012-2013	0.00	0.00	0.00	1.18	1.69	2.64	1.02	0.67	0.43	0.31	0.12	0.04	8.11
2011-2012	0.00	0.08	0.04	1.06	2.17	0.16	2.28	0.35	2.68	2.24	0.00	0.00	11.06
2010-2011	0.00	0.00	0.12	1.54	1.85	11.46	3.03	3.78	8.03	0.28	0.59	1.10	31.77
2009-2010	0.00	0.00	0.04	6.22	0.04	2.87	9.76	4.13	1.14	1.93	0.04	0.00	26.18
2008-2009	0.00	0.00	0.00	0.04	0.04	0.75	0.71	4.61	1.06	0.20	0.20	0.35	7.95
2007-2008	0.00	0.00	0.00	0.43	0.12	2.68	10.47	2.99	0.00	0.24	0.00	0.00	16.93
2006-2007	0.00	0.00	0.00	0.12	0.43	2.28	1.26	2.56	0.43	0.35	0.04	0.00	7.48
2005-2006	0.04	0.20	0.63	0.24	0.75	2.52	4.45	3.70	3.90	3.70	2.64	0.00	22.76

San Luis Obispo County Public Works DAILY PRECIPITATION

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2015-2016

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2					0.59								2
3						0.04			CURREN	IT THRO	JGH 2/29)	3
4				0.04									4
5							1.02						5
6							0.75						6
7							0.23						7
8					0.23								8
9					0.04		0.04						9
10					0.04	0.04	0.08						10
11						0.39							11
12													12
13						0.08	0.04						13
14			0.08										14
15				0.04	0.28		0.04						15
16							0.08						16
17								0.67					17
18							0.28	0.19					18
19	1.69					0.51	0.86						19
20	0.24												20
21						0.28							21
22						0.47	0.16						22
23							0.08						23
24						0.04							24
25					0.08								25
26													26
27													27
28													28
29													29
30							0.27						30
31							1.11						31
Total	1.93	0.00	0.08	0.08	1.26	1.85	5.04	0.86					
Cum.		1	0.00										
Total	1.93	1.93	2.01	2.09	3.35	5.20	10.24	11.10	11.10	11.10	11.10	11.10	

Season Total 11.10

San Luis Obispo County Public Works DAILY PRECIPITATION

(inches)

Station Name and no. Los Osos Landfill #727 Season 2014-2015

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1									0.43				1
2						0.51							2
3													3
4						0.67							4
5						0.04							5
6								0.12					6
7								0.51					7
8					0.04			0.20					8
9													9
10								0.08					10
11					0.04	1.22							11
12						1.22							12
13					0.04								13
14											0.12		14
15						0.71				0.47			15
16						0.71							16
17						0.08							17
18						0.04							18
19					0.08								19
20													20
21													21
22					0.04								22
23													23
24													24
25										0.20			25
26													26
27							0.08						27
28													28
29					0.04								29
30													30
31													31
Total	0.00	0.00	0.00	0.00	0.28	5.20	0.08	0.91	0.43	0.67	0.12	0.00	
Cum. Total	0.00	0.00	0.00	0.00	0.28	5.47	5.55	6.46	6.89	7.56	7.68	7.68	

Season Total 7.68

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2013-2014

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1									0.59	0.24			1
2								0.87	0.20	0.28			2
3								0.04					3
4													4
5													5
6								0.31					6
7						0.12							7
8								0.04					8
9								0.04					9
10								0.08					10
11													11
12													12
13													13
14								0.04					14
15													15
16													16
17													17
18													18
19													19
20					0.20								20
21					0.08								21
22													22
23													23
24													24
25										0.16			25
26								0.87	0.04	0.04			26
27								0.28					27
28				0.24				1.50					28
29									0.16				29
30									0.04				30
31									0.39				31
Total	0.00	0.00	0.00	0.24	0.28	0.12	0.00	4.06	1.42	0.71	0.00	0.00	
Cum. Total	0.00	0.00	0.00	0.24	0.51	0.63	0.63	4.69	6.10	6.81	6.81	6.81	

Season Total 6.81

(inches)

Station Name and no. Los Osos Landfill #727 Season 2012-2013

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1						0.12				0.28			1
2						0.55							2
3													3
4										0.04			4
5							0.39						5
6							0.31				0.12		6
7									0.24				7
8								0.47	0.08				8
9					0.04								9
10				0.24									10
11				0.87									11
12						0.04							12
13													13
14									0.04				14
15						0.04							15
16					0.08	0.08							16
17					0.47	0.16							17
18					0.24								18
19								0.20					19
20													20
21				0.04									21
22						0.75							22
23						0.24							23
24							0.28					0.04	24
25						0.28	0.04						25
26						0.04							26
27													27
28					0.55								28
29					0.08	0.35							29
30				0.04	0.24				0.04				30
31									0.04				31
T-4:1	0.00	0.00	0.00	4.40	4.00	0.04	4.00	0.07	0.40	0.01	0.40	0.04	
Total	0.00	0.00	0.00	1.18	1.69	2.64	1.02	0.67	0.43	0.31	0.12	0.04	
Cum. Total	0.00	0.00	0.00	1.18	2.87	5.51	6.54	7.20	7.64	7.95	8.07	8.11	

Season Total 8.11

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2011-2012

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2													2
3				0.08	0.04								3
4				0.04	0.28								4
5				0.91									5
6					0.28								6
7								0.04					7
8													8
9													9
10				0.04				0.04		0.55			10
11					0.31					0.16			11
12						0.16				0.28			12
13								0.08		1.02			13
14													14
15								0.08					15
16									0.12				16
17									1.46				17
18									0.12				18
19													19
20					1.26		0.20						20
21							0.87						21
22													22
23							1.22						23
24													24
25									0.63	0.20			25
26		0.04								0.04			26
27													27
28									0.16				28
29								0.12					29
30		0.04	0.04										30
31									0.20				31
Total	0.00	0.00	0.04	1.00	0.47	0.40	2.20	0.35	2.60	2.24	0.00	0.00	
Total	0.00	0.08	0.04	1.06	2.17	0.16	2.28	0.35	2.68	2.24	0.00	0.00	
Cum. Total	0.00	0.08	0.12	1.18	3.35	3.50	5.79	6.14	8.82	11.06	11.06	11.06	

Season Total 11.06

(inches)

Station Name and no. Los Osos Landfill # 727 Season 2010-2011

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1							0.39						1
2							2.52		0.08				2
3													3
4			0.04			0.04			0.04			0.59	4
5				0.31		0.75						0.35	5
6				0.24	0.04				0.12			0.12	6
7					0.47								7
8													8
9						0.04							9
10					0.04								10
11									0.04				11
12													12
13						0.04							13
14								0.04					14
15						0.04					0.16		15
16								0.59	0.08		0.16		16
17			0.04	0.04		0.43		0.47			0.16		17
18				0.08		2.95		1.54	0.47		0.08		18
19					0.24	2.24		0.55	2.28				19
20			0.04		0.71	1.06		0.04	2.91				20
21				0.04	0.24	0.35			0.24	0.28			21
22				0.04		1.57			0.04				22
23				0.08	0.12				0.87				23
24				0.28					0.63				24
25						0.79		0.51	0.04				25
26								0.04	0.16				26
27													27
28						0.31			0.04				28
29				0.35		0.83					0.04	0.04	29
30				0.08									30
31							0.12						31
Total	0.00	0.00	0.12	1.54	1.85	11.46	3.03	3.78	8.03	0.28	0.59	1.10	
Cum. Total	0.00	0.00	0.12	1.65	3.50	14.96	17.99	21.77	29.80	30.08	30.67	31.77	

Season Total 31.77

(inches)

Station Name and no. Los Osos Landfill #727 Season 2009-2010

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1										0.04			1
2									0.08				2
3									0.43				3
4								0.08	0.04				4
5								0.51		0.31			5
6								0.39	0.20				6
7						0.47							7
8									0.04				8
9								0.63					9
10						0.75			0.04				10
11										0.98			11
12						1.22	0.51		0.08	0.08			12
13				5.43		0.04	0.31	0.04					13
14				0.79		0.04							14
15													15
16													16
17							0.55				0.04		17
18							1.14						18
19							0.91						19
20					0.04		2.36	0.04		0.51			20
21						0.16	2.01	0.12					21
22							1.22		0.04				22
23			0.04				0.04	0.04					23
24								0.39					24
25													25
26							0.59	1.42					26
27						0.08		0.47					27
28													28
29							0.08		0.04				29
30						0.12	0.04		0.04				30
31									0.12				31
Total	0.00	0.00	0.04	6.22	0.04	2.87	9.76	4.13	1.14	1.93	0.04	0.00	
Cum. Total	0.00	0.00	0.04	6.26	6.30	9.17	18.94	23.07	24.21	26.14	26.18	26.18	

Season Total 26.18

(inches)

Station Name and no. Los Osos Landfill #727 Season 2008-2009

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1					0.04						0.04		1
2							0.08		0.16		0.12		2
3									0.59				3
4				0.04					0.08				4
5											0.04	0.35	5
6								0.87					6
7										0.20			7
8													8
9								1.10					9
10													10
11								0.04					11
12								0.04					12
13								0.63					13
14								0.04					14
15													15
16						0.12							16
17								1.10					17
18													18
19													19
20													20
21						0.08							21
22						0.43		0.47	0.24				22
23							0.51	0.31					23
24							0.12						24
25						0.12							25
26													26
27													27
28													28
29													29
30													30
31													31
Total	0.00	0.00	0.00	0.04	0.04	0.75	0.71	4.61	1.06	0.20	0.20	0.35	
Cum. Total	0.00	0.00	0.00	0.04	0.08	0.83	1.54	6.14	7.20	7.40	7.60	7.95	

Season Total 7.95

(inches)

Station Name and no. Los Osos Landfill #727 Season 2007-2008

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1								0.08					1
2					0.04			0.24		0.20			2
3								1.02		0.04			3
4							3.66						4
5							0.20						5
6						0.24	0.39						6
7						0.08							7
8							0.08						8
9							0.04						9
10													10
11					0.08								11
12													12
13													13
14													14
15													15
16				0.28									16
17				0.08									17
18						2.24							18
19								0.20					19
20						0.12		0.16					20
21							0.08	0.08					21
22							2.32	0.12					22
23							1.06	0.87					23
24							0.87	0.24					24
25							0.31						25
26							0.63						26
27				0.08			0.67						27
28							0.08						28
29							0.04						29
30							0.04						30
31													31
Total	0.00	0.00	0.00	0.43	0.12	2.68	10.47	2.99	0.00	0.24	0.00	0.00	
Cum. Total	0.00	0.00	0.00	0.43	0.55	3.23	13.70	16.69	16.69	16.93	16.93	16.93	

Season Total 16.93

(inches)

Station Name and no. Los Osos Landfill #727 Season 2006-2007

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1													1
2								0.04					2
3													3
4							0.12				0.04		4
5													5
6													6
7								0.20					7
8						0.39							8
9						0.94							9
10						0.31		0.71					10
11					0.08								11
12								0.04					12
13				0.08	0.20								13
14					0.08								14
15													15
16													16
17					0.04	0.04	0.04						17
18													18
19										0.04			19
20									0.28	0.24			20
21						0.04							21
22								0.87		0.08			22
23				0.04				0.12					23
24													24
25								0.08					25
26					0.04	0.43		0.16	0.08				26
27						0.12	0.83	0.20	0.08				27
28							0.20	0.16					28
29							0.08						29
30													30
31													31
							4						
Total	0.00	0.00	0.00	0.12	0.43	2.28	1.26	2.56	0.43	0.35	0.04	0.00	
Cum. Total	0.00	0.00	0.00	0.12	0.55	2.83	4.09	6.65	7.09	7.44	7.48	7.48	

Season Total 7.48

(inches)

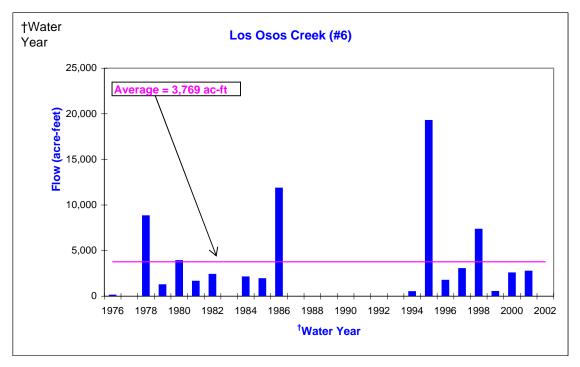
Station Name and no. Los Osos Landfill #727 Season 2005-2006

Day	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	Day
1							1.61						1
2			0.63			0.55	2.32			0.24			2
3								0.04		1.18			3
4										0.59			4
5										0.39			5
6													6
7										0.08			7
8						0.47							8
9					0.59				0.04				9
10									0.28	0.43			10
11		0.16			0.04				0.12				11
12		0.04							0.28				12
13													13
14	0.04						0.24		0.04	0.04			14
15													15
16										0.08			16
17				0.12					0.24	0.04			17
18						0.16	0.16	3.66					18
19													19
20				0.04					0.35				20
21						0.04			0.04		2.60		21
22						0.04					0.04		22
23						0.04							23
24													24
25					0.08	0.12			0.12				25
26				0.08		0.04	0.08			0.63			26
27									0.43				27
28						0.12			1.38				28
29									0.16				29
30					0.04		0.04						30
31						0.94			0.43				31
Total	0.04	0.20	0.63	0.24	0.75	2.52	4.45	3.70	3.90	3.70	2.64	0.00	
Cum. Total	0.04	0.24	0.87	1.10	1.85	4.37	8.82	12.52	16.42	20.12	22.76	22.76	

Season Total 22.76

Stream Flow

Stream Gage Name: Los Osos Creek (#6)


Water Planning Area: 3

Water	Annual Stream		Water	Annual Stream	
Year [†]	Flow (acre-feet)		<u>Year</u> †	Flow (acre-feet)	
1976	110	1	1990		9
1977	0		1991		10
1978	8,810		1992		11
1979	1,240		1993		12
1980	3,890	2	1994	497	
1981	1,630		1995	19,270	
1982	2,390	3	1996	1,740	
1983		4	1997	3,020	
1984	2,110		1998	7,340	
1985	1,920		1999	505	
1986	11,850	5	2000	2,540	
1987		6	2001	2,470	
1988		7	2002	0	
1989		8	2003	NA	13
1					

From Annual Stream Flow RecordsAverage Flow:3,769 AFYMedian Flow:2,110 AFYMinimum Flow (2002):0 AFYMaximum Flow (1995):19,270 AFY

⁶⁻¹² no data available for this time period

(notations as recorded in San Luis Obispo County stream flow log books)

[†] October 1 - September 30

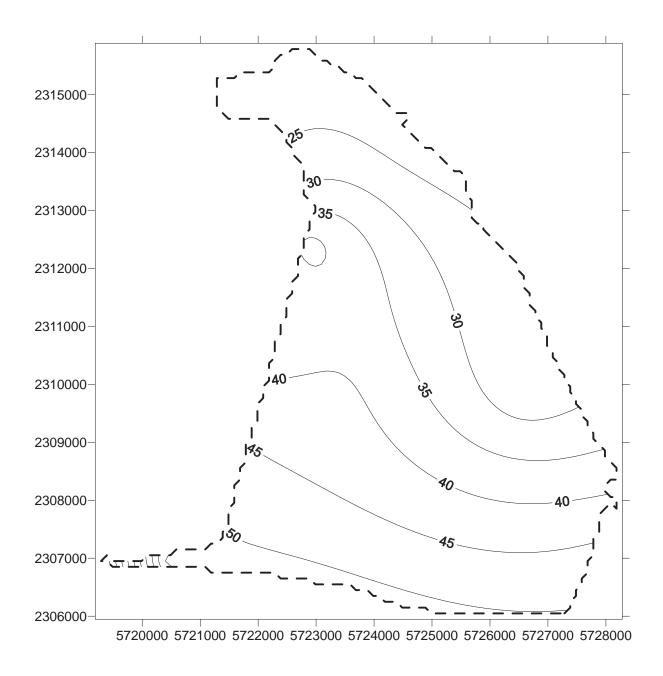
¹ gage put into operation in February

² missing data for one day in February

³ missing data for various days in February, March, and April

⁴ only visual observations were available for this year

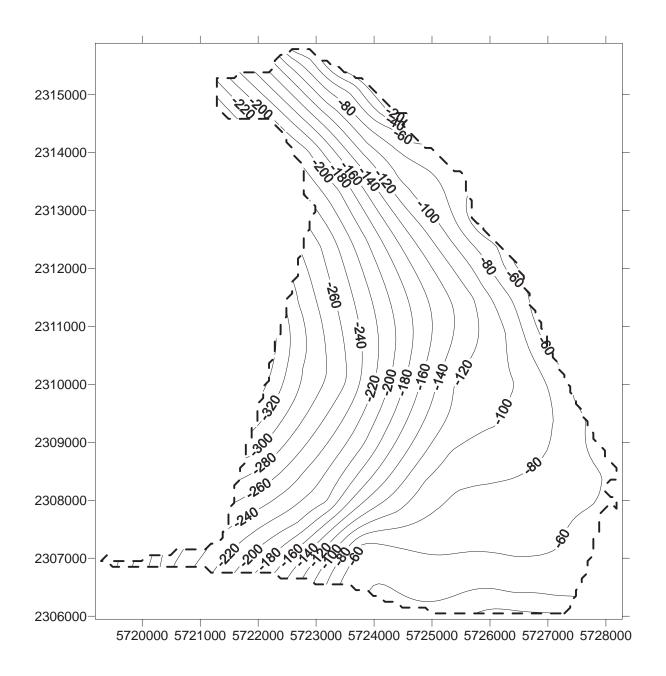
⁵ missing data for the end of February and beginning of March


¹³ Data not available at the time the report was published

APPENDIX G

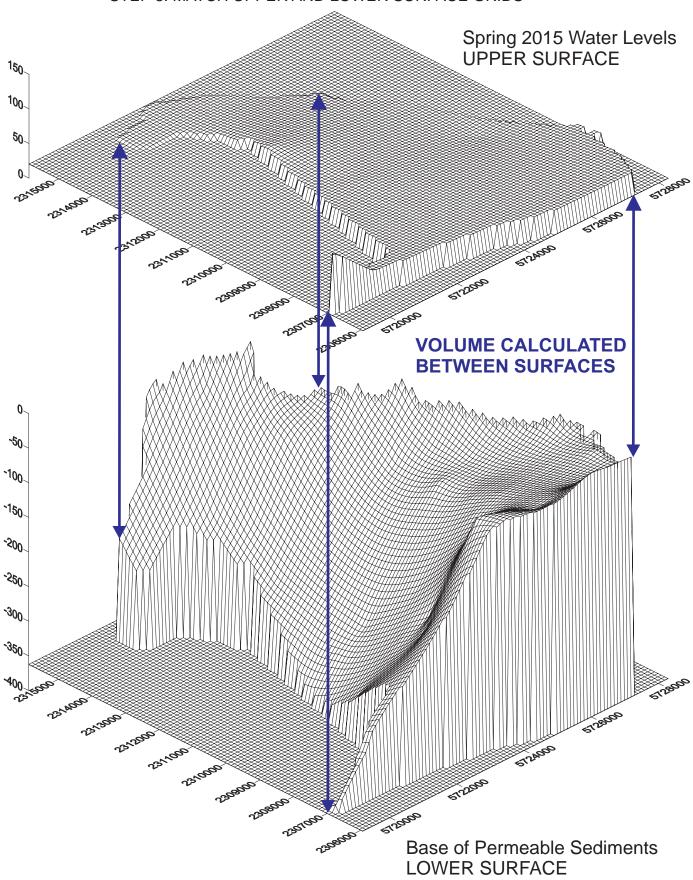
Groundwater Storage Calculation Example Specific Yield Estimates

EXAMPLE STORAGE CALCULATION FOR EASTERN AREA:


STEP 1: GRID AND TRIM WATER LEVEL CONTOURS

Spring 2015
Eastern Area Water Levels
Alluvial Aquifer and Lower Aquifer

EXAMPLE STORAGE CALCULATION FOR EASTERN AREA:


STEP 2: GRID AND TRIM BASE OF PERMEABLE SEDIMENTS

Eastern Area Base of Permeable Sediments

EXAMPLE STORAGE CALCULATION FOR EASTERN AREA:

STEP 3: MATCH UPPER AND LOWER SURFACE GRIDS

EXAMPLE STORAGE CALCULATION FOR EASTERN AREA:

STEP 4: VOLUME COMPUTATION

Grid Volume Computations

Thu Apr 28 17:15:30 2016

Upper Surface

Grid File Name: C:\CHG 2016\Projects\Los Osos BMC\2015 Annual Report\Contour Maps

NAVD88\BLANKED FILES\EASTERN\UA_SPRING NAVD88 with eastern.grd

Grid Size: 100 rows x 92 columns

X Minimum: 5719189 X Maximum: 5728284

X Spacing: 99.945054945055

Y Minimum: 2305947 Y Maximum: 2315886

Y Spacing: 100.39393939394

Z Minimum: 20.35766223355 Z Maximum: 20.35766223355

Lower Surface

Grid File Name: C:\CHG 2016\Projects\Los Osos BMC\2015 Annual Report\Contour Maps

NAVD88\BASE GEOMETRY\EASTERN\BOP Eastern blanked.grd

Grid Size: 100 rows x 92 columns

X Minimum: 5719189 X Maximum: 5728284

X Spacing: 99.945054945055

Y Minimum: 2305947 Y Maximum: 2315886

Y Spacing: 100.39393939394

Z Minimum: -362.32467224801 Z Maximum: 2.39586300134

Volumes

Z Scale Factor:

Total Volumes by:

Trapezoidal Rule: 7813709488.9211 Simpson's Rule: 7809172310.5849 Simpson's 3/8 Rule: 7806317420.98

EXAMPLE STORAGE CALCULATION FOR EASTERN AREA:

STEP 5: CALCULATE GROUNDWATER IN STORAGE

Cut & Fill Volumes

Positive Volume [Cut]: 7813709488.9211

Negative Volume [Fill]: 0

Net Volume [Cut-Fill]: 7813709488.9211

Areas

Planar Areas

Positive Planar Area [Cut]: 41665677.518315

Negative Planar Area [Fill]: 0

Blanked Planar Area: 48729527.481685

Total Planar Area: 90395205

Surface Areas

Positive Surface Area [Cut]: 41778804.878129

Negative Surface Area [Fill]: 0

STORAGE CALCULATION

Positive Volume: 7,813,709,488 ft³ * 0.1 specific yield ÷ 43,560 acre-feet per ft³ = 17,938 acre-feet

WELL 30S/10E-12J01												
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)						
sand	5	27	22	20								
clay	27	32	5	3								
sand (peat)	32	70	38	5	C							
clay	70	72	2	3		Weighted Specific Yield						
gravel	72	82	10	18		10.8						
clay	82	96	14	3								
sand	96	100	4	20								
silt	100	135	35	5								
clay	135	157	22	3								
gravel	157	158	1	18	D							
sand	158	169	11	20								
sand and clay	169	194	25	5								
gravel	194	205	11	18		Weighted Specific Yield						
sand and clay	205	217	12	5		7.3						
clay	217	222	5	3								
sand and clay	222	245	23	5								
sand and gravel	245	257	12	18								
sand	257	264	7	20								
sand and gravel	264	274	10	18								
sand	274	290	16	20								
sand and silt	290	304	14	5								
sand	304	323	19	20	_							
sand and clay	323	330	7	5	E							
clay	330	339	9	3								
sand	339	341	2	20								
clay	341	346	5	3								
sand	346	352	6	20								
sand and clay	352	356	4	5								
sand	356	370	14	20		Weighted Specific Yield						
sand and gravel	370	386	16	18		13.4						
clay	386	392	6	3		Weighted Specific Yield						
shale	392	402	10	13	BEDROCK	8						
Total Depth	BOREHOLE WEIGHTED					10.6						

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

		V	/ELL 30S	/10E-13L04	_	
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)
top soil	0	19	19	-		
clay, some gravel and sand	19	26	7	unsaturated		
gravel, clay and sand	26	41	15			
fine sand	41	61	20	20		
clay, sand, small rocks	61	71	10	7		
clay, few pebbles	71	75	4	7		
fine gravel and sand	75	81	6	18	С	
sandy clay	81	95	14	5		
hard clay	95	97	2	3		
fine sand	97	115	18	20		
clay	115	118	3	3		
sand and gravel	118	149	31	18		
reddish brown clay,	149	164	15	7		
gravel	164	170	6	18		Weighted Specific Yield
sand and clay	170	190	20	5		12.9
tan clay, some gravel	190	210	20	7		
hard green clay	210	240	30	3		
tan sand	240	248	8	20		
clay and sand	248	260	12	5		
fine sand	260	277	17	20		
gravel	277	283	6	18	D	
fine sand	283	293	10	20		
fine gravel	293	310	17	18		
sand and clay	310	340	30	5		
coarse gravel	340	356	16	18		Weighted Specific Yield
gravel and clay	356	370	14	7		10.8
fine sand	370	394	24	20		
coarse gravel boulders	394	426	32	18		
gravel	426	456	30	18		
clay sand and gravel	456	500	44	7	_	
sand clay and gravel	500	570	70	7	E	
gravel and clay	570	600	30	7		
silt and clay	600	619	19	5		
black mud	619	621	2	3		Weighted Specific Yield
gravel	621	670	49	18		12
hard clay, sandstone	670	675	5	3	BEDROCK	Weighted Specific Yield
						3
Total Depth	675			BOREHOLE WE SPECIFIC YIELD (11.8

	WELL 30S/11E-7Q03								
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)			
sandy brown soil	0	6	6	unsaturated	Α	Weighted Specific Yield			
sand	6	17	11	20	A	20			
clay some gravel	17	20	3	7					
sand	20	48	28	20	С				
clay	48	52	4	3	C	Weighted Specific Yield			
cemented sand	52	127	75	15		15.6			
clay	127	230	103	3					
sand some gravel	230	245	15	18	D	Weighted Specific Yield			
gravel	245	276	31	18		7.6			
clay	276	325	49	3					
sand	325	332	7	20					
clay	332	343	11	3					
sand	343	350	7	20	l E				
sand and gravel	350	356	6	18					
rock	356	357	1	15	· ·	Weighted Specific Yield			
sand and gravel	357	402	45	18		11.1			
clay	402	411	9	3	BEDROCK	Weighted Specific Yield			
						3			
Total Depth	Total Depth 411 BOREHOLE WEIGHTED SPECIFIC YIELD (PERCENT)					11.3			

#	corrected depth using e-log

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

	WELL 30S/11E-17C01								
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)			
sandy soil	0	3	3	unsaturated					
sand	3	28	25	unsaturateu	Α				
sandy clay	28	34	6	5	A	Weighted Specific Yield			
sand	34	48	14	20		15.5			
clay	48	52	4	3					
sand and gravel	52	56	4	18					
clay	56	76	20	3					
clay and gravel	76	80	4	7	С				
sandy clay	80	91	11	5	C				
sand	91	104	13	20					
clay	104	108	4	3		Weighted Specific Yield			
sand	108	114	6	20		9.4			
silty clay	114	148	34	5					
sandy clay	148	165	17	5	_				
sand	165	183	18	20	D	Weighted Specific Yield			
sand and gravel	183	230	47	18		12.6			
clay	230	236	6	3					
sandy clay	236	246	10	5	_				
sand and gravel	246	254	8	18	E	Weighted Specific Yield			
clay	254	270	16	3		6.5			
Total Depth	270			BOREHOLE WEIGHTED SPECIFIC YIELD (PERCENT)		11			

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

	WELL 30S/11E-17J01									
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)				
all inferred from e-log										
no data	0	8	8	unsaturated						
clay	8	15	7	unsaturateu						
sandy clay	15	37	22	5	_					
clay	37	40	3	3	С					
sandy clay	40	48	8	5		Weighted Specific Yield				
sand	48	72	24	20		11.2				
sandy clay	72	118	46	5						
sand	118	128	10	20						
sandy clay	128	150	22	5	D					
sand	150	163	13	20	U					
clay	163	168	5	3		Weighted Specific Yield				
sand	168	189	21	20		10.6				
sandy clay	189	214	25	5						
sand	214	220	6	20						
clay with sand beds	220	232	12	5						
sand, some clay	232	244	12	15						
clay	244	262	18	3						
sandy clay	262	271	9	5	1 _					
clay	271	278	7	3	E					
sandy clay	278	291	13	5						
clay	291	297	6	3						
sandy clay and clay	297	315	18	5						
clay	315	319	4	3		Weighted Specific Yield				
sand	319	329	10	20		7.1				
rock	329	333	4	13	BEDROCK	Weighted Specific Yield				
						13				
Total Depth	Total Depth 333 BOREHOLE WEIGHTED SPECIFIC YIELD (PERCENT)					9.1				

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

	WELL 30S/11E-17N10								
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)			
fill	0	3	3		Λ	Weighted Specific Yield			
sand	3	37	34	20	Α	20			
clay	37	42	5	3					
gravelly clay	42	50	8	7					
clay	50	58	8	3	l _D				
sand and gravel	58	81	23	18	В				
sand	81	92	11	20		Weighted Specific Yield			
sand and gravel	92	98	6	18		13.7			
clayey sand	98	120	22	5					
sand and gravel	120	150	30	18					
clayey gravel	150	170	20	7					
gravelly sand	170	187	17	18	С				
gravelly clay	187	197	10	7		Weighted Specific Yield			
sandy gravel	197	210	13	18		12.5			
clay	210	225	15	3					
sand and gravel	225	250	25	18					
sandy clay	250	260	10	5					
sand and gravel	260	270	10	18	D				
gravelly clay	270	275	5	7	שו				
gravelly sand	275	290	15	18					
sandy clay	290	320	30	5		Weighted Specific Yield			
sand	320	400	80	20		14.6			
sandy clay	400	480	80	5					
gravelly sand	480	530	50	18	E				
sand / silty sand	530	630	100	5		Weighted Specific Yield			
sandy clay	630	750	120	5		6.9			
Total Depth	750			BOREHOLE WI		10.8			

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

	WELL 30S/11E-18K08								
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)			
						Weighted Specific Yield			
sand	50	110	60	20	A & B	20.00			
sandy clay	110	132	22	5					
cemented sand	132	151	19	15					
sandy clay	151	158	7	5					
sand	158	195	37	20					
sandy clay	195	200	5	5	С				
sand	200	225	25	20	C				
sandy clay	225	235	10	5					
sand	235	254	19	20					
sandy clay	254	260	6	5		Weighted Specific Yield			
sand with gravel	260	264	4	18		14.5			
sandy clay	264	288	24	5					
clayey sand	288	305	17	5					
sandy clay	305	310	5	5					
clayey sand	310	324	14	5					
clay with sand	324	350	26	5	D				
silty sand	350	370	20	3	ע				
sandy clay	370	380	10	5					
sand	380	386	6	20					
sandy clay	386	395	9	5		Weighted Specific Yield			
silty sand	395	490	95	3		4.4			
clay sandy clay	490	515	25	5					
silty sand	515	592	77	3	E	Weighted Specific Yield			
sand with seashells	592	660	68	20	_	10.1			
Total Depth	660			BOREHOLE WEIGHTED SPECIFIC YIELD (PERCENT)		10.1			

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

	WELL 30S/11E-18M01								
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)			
fine brown sand	40	70	30	20					
sand, sandy clay	70	160	90	5	С	Weighted Specific Yield			
sand	160	165	5	20		9.2			
sandy clay	165	245	80	5					
sandy clay with gravel	245	275	30	7	D				
sandy clay	275	350	75	5		Weighted Specific Yield			
sand and gravel	350	372	22	18		6.7			
sandy clay with gravel	372	392	20	5					
sandy clay	392	460	68	7					
sandy clay with gravel	460	490	30	5	_				
sandy clay	490	536	46	7	E				
sand and gravel	536	562	26	18		Weighted Specific Yield			
sandy clay with gravel	562	630	68	7		7.7			
Total Depth	630			BOREHOLE WEIGHTED SPECIFIC YIELD (PERCENT)		7.7			

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

	WELL 30S/11E-20G02								
Lithology	Start Depth	End Depth	Thickness	Specific Yield (percent)*	Zone	Weighted Specific Yields (percent)			
silty-clay-soil	0	11	11	unsaturated					
gravel	11	15	4	unsaturateu					
clayey sand	15	53	38	5	C				
gravel	53	55	2	18		Weighted Specific Yield			
clayey sand	55	75	20	5		5.4			
clay	75	117	42	3					
gravel	117	120	3	18					
sand	120	197	77	20	D	Weighted Specific Yield			
coarse sand and gravel	197	213	16	18		14.6			
clayey sand	213	290	77	5					
sand	290	315	25	20	E	Weighted Specific Yield			
gravelly sand	315	335	20	18		10.2			
bedrock, tight rock	335	380	45	15	BEDROCK	Weighted Specific Yield			
						15			
Total Depth	380			BOREHOLE W SPECIFIC YIELD		11.2			

^{*} Johnson, A. I., 1967, Specific Yield - Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water Supply Paper 1662-D

TO: Los Osos Basin Management Committee

FROM: Rob Miller, Interim Executive Director

DATE: May 18, 2016

SUBJECT: Item 7b - Consider Video Recording of BMC Meetings

Recommendation

Staff recommends that the Committee provide direction to staff on the desired scope for video recording of the meetings.

Discussion

During the April BMC meeting, several BMC directors indicated an interest in reconsidering video recording services for BMC monthly meetings. As indicated in previous Executive Director reports, staff expects that the cost to retain AGP to produce a video recording of the meetings will not exceed \$2,000 per year more than the current service arrangement, which is limited to an audio recording. It also appears that facility rent expenses will be approximately \$2,000 under budget for 2016, and therefore adequate funding exists if video recording is desired. Once further direction from the Committee is received, staff will make the requested arrangements. In any event, audio recordings of the meetings will continue to be posted on the BMC website:

http://www.slocountywater.org/site/Water%20Resources/LosOsos/

Financial Considerations

As indicated above, video recording services can be accommodated under existing budget items 2 and 3.