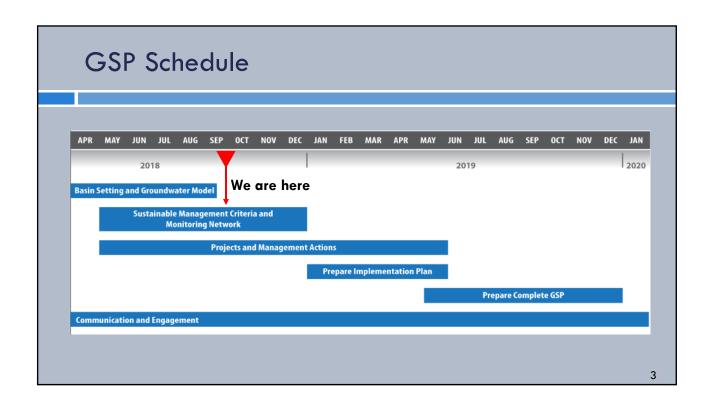
PASO ROBLES SUBBASINGSP DEVELOPMENT

Paso Robles Basin GSAs

City of Paso Robles
County of San Luis Obispo
Heritage Ranch CSD
San Miguel CSD
Shandon-San Juan Water District

September 12, 2018
*Slide 18 Undated 9/19/19

Project Status Update



Presentation Outline

- GSP Schedule and Chapter Delivery
- Groundwater Conditions (GSP Chapter 5)
- Water Budgets (GSP Chapter 6)
- Sustainable Management Criteria (GSP Chapter 7)
- Monitoring Data & De Minimis Extractors

GSP Chapters		
CHAPTER 1.CHAPTER 2.CHAPTER 3.CHAPTER 4.	Introduction to Paso Robles Subbasin GSP Agency Information Description of Plan Area Hydrogeologic Conceptual Model	Receive/Recommend 7/25 Receive/Recommend 7/25 Receive/Recommend 7/25 Receive/Recommend 9/12
CHAPTER 5.CHAPTER 6.CHAPTER 7.	Groundwater Conditions Water Budgets Sustainable Management Criteria	, , , , , , , , , , , , , , , , , , ,
CHAPTER 8.CHAPTER 9.CHAPTER 10.CHAPTER 11.	Monitoring Networks Projects and Management Actions Plan Implementation Notice and Communications	
• Ch. 11.1 • CHAPTER 12.	Communications and Engagement Plan Interagency Agreements	Receive/Recommend 7/25

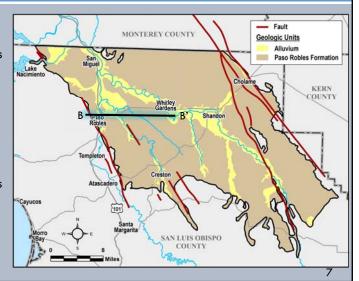
Groundwater Conditions (GSP Chapter 5)

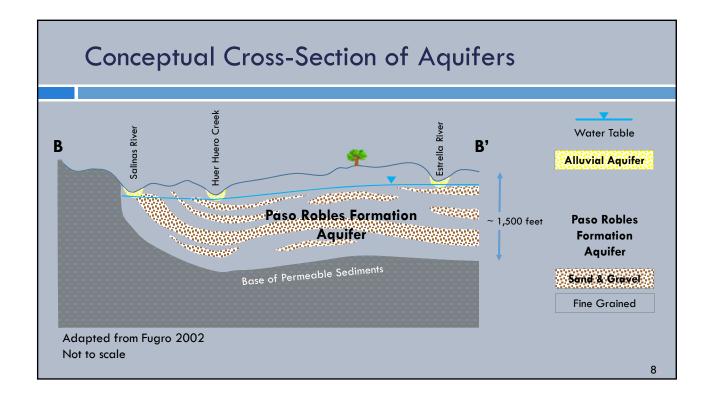
Groundwater Conditions

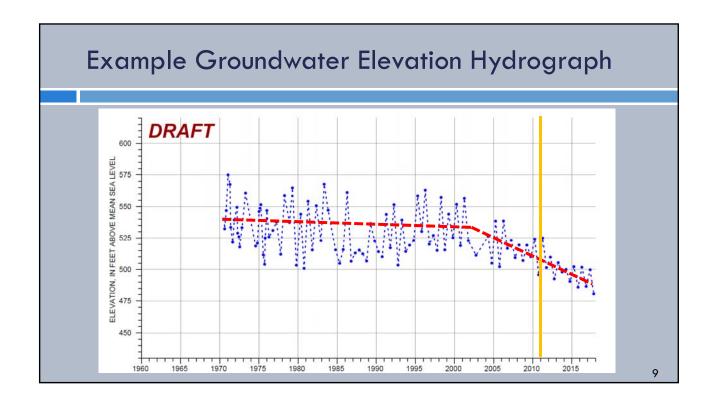
- GSP Regulations §354.16
- Preliminary draft chapter provided to GSA staff for review
- CC recommend GSAs receive & file Chapter 5 at Oct 2018 meeting
- Contents required by regulations align with sustainability indicators:

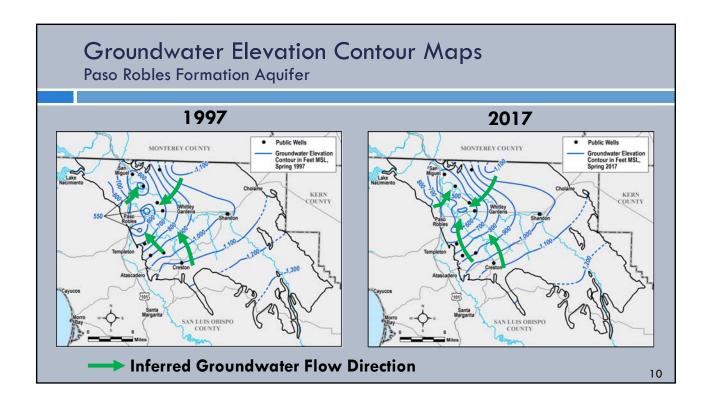
Land Subsidence

Surface Water Depletion

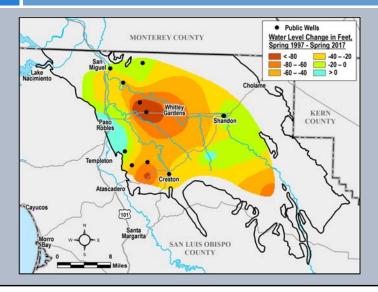

Aquifers in Paso Robles Subbasin


Alluvial Aquifer (yellow areas)


- Coarse-grained sediments along rivers & streams
- Up to about 100 ft thick
- High well yields (some > 1,000 gpm)
- About 5% of basin pumping from alluvium


Paso Robles Form. Aquifer (brown areas)

- Mix of sand & gravel zones and silt & clay zones
- Generally 700 to 1,200 feet thick
- Well yields vary from 100s to over 1,000 gpm
- About 95% of basin pumping from PRFm



Change in Spring Groundwater Elevations

1997 to 2017 - Paso Robles Formation Aquifer

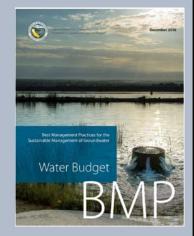
Observations:

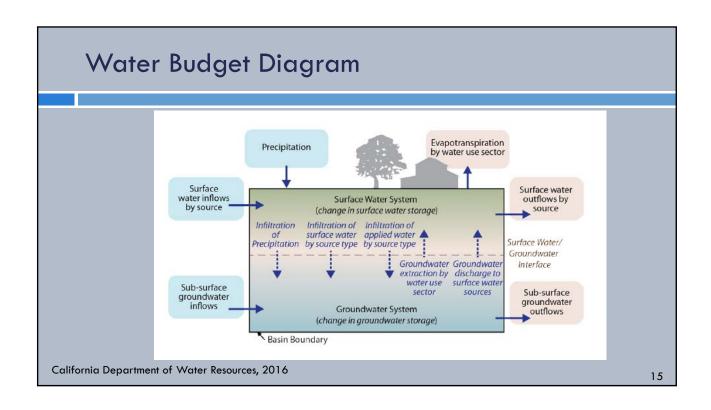
- Decline in GW elevation over most of subbasin
- Areas of largest decline in Estrella and Creston areas
- Declines in groundwater elevations result in depletion of groundwater in storage

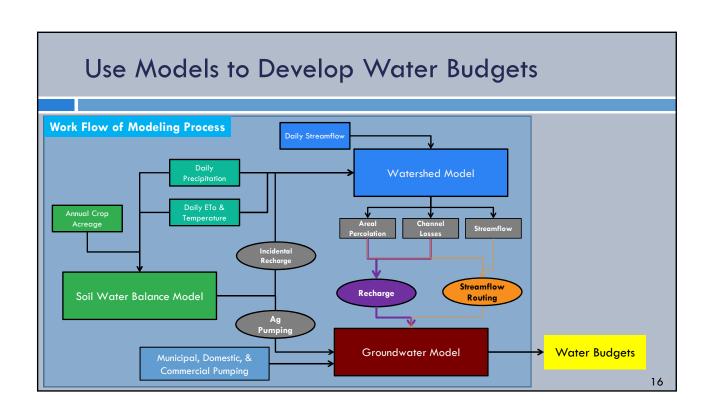
11

Summary of Groundwater Conditions

- Chapter 5 of GSP (draft in progress)
 - CC recommends GSAs receive and file at October CC meeting
- GSP addresses two aquifers:
 - Alluvial Aquifer
 - Paso Robles Formation Aquifer
- Groundwater elevations
 - Generally declined from 1997 to 2017
 - Amount of decline varies over Subbasin

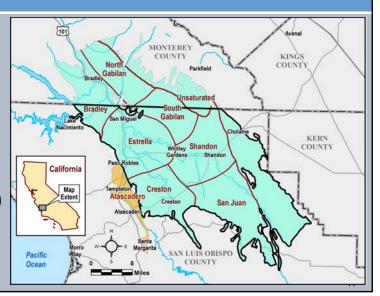

12


Water Budgets (GSP Chapter 6)


13

Basics of Water Budgets

- CA CCR §354.18 & Best Management Practices document
- Three water budgets for GSP:
 - 1. Historic (1981-2011)
 - 2. Current (2012-2016)
 - 3. Future (2020-2070)
- Water budget must include:
 - Inventory all inflows (supply) and outflows (demand)
 - Evaluate changes in groundwater storage
 - Estimate groundwater overdraft
 - Estimate sustainable yield


GSP Water Budgets

- Previous water budgets:
 - Entire Paso Robles Subbasin
 - Included Atascadero Subbasin
- GSP water budgets:
 - GSP area* (outlined in black)

WATER YEAR

Informal subareas

* Paso Robles Subbasin within County of SLO

18

Water Budget for GSP Area 250,000 750,000 **Observations** 200,000 600,000 Streambed percolation NFLOWS AND OUTFLOWS (ACRE-FEET) 150,000 450,000 important for recharging Subbasin 100,000 300,000 50,000 150,000 Groundwater pumping dominant outflow Loss of groundwater in storage 150,000 -50,000 • 1981 to 2011 about 170,000 -100,000 -150,000 INFLOWS OUTFLOWS GROUNDWATER OUTFLOW FROM GSP AREA GROUNDWATER SEEPAGE TO RIVERS • 1981 to 2016 about 490,000 TREAMBED PERCOLATION GROUNDWATER PUMPING CUMULATIVE STORAGE

Estimated Groundwater Overdraft (GSP Area)

- Hydrogeologic definition of overdraft: long-term condition of total outflow (including pumping) exceeding total inflow
- Overdraft causes a loss of groundwater in storage
- Estimated overdraft conditions:

• 1981 – 2011 (pre-drought): 5,500 AFY • 1981 – 2016 (includes drought): 13,700 AFY

• Provides basis for developing projects & management actions

Groundwater Overdraft (Subareas)

Subarea	1981 to 2011 Average Overdraft (AFY)	1981 to 2016 Average Overdraft (AFY)
Estrella	- 6,100	- 8,400
San Juan	- 2,800	- 4,100
Creston	300	- 1,900
Shandon	700	- 700
Bradley	-	- 200
North Gabilan	100	100
South Gabilan	2,200	1,500
AFY = acre feet per year		

Estimated Sustainable Yield for GSP Area

- Definition: maximum quantity of water, calculated over a base period representative of <u>long-term conditions</u> in the basin, and including temporary surplus that can be pumped annually from groundwater supply without causing an <u>undesirable result</u> (DWR, 2016)
- 1981 to 2011 *

Total estimated groundwater pumping: 74,000 AFY
 Estimated overdraft: 5,500 AFY
 Estimated sustainable yield: 68,500 AFY

1981 to 2016 *

Total estimated groundwater pumping: 76,000 AFY
 Estimated overdraft: 13,700 AFY
 Estimated sustainable yield: 62,300 AFY

* All values are annual averages

21

Future Water Budgets

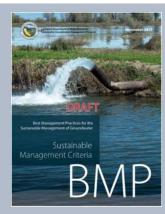
- In progress
- Purpose is to project overdraft if existing land uses continued
- Conceptual approach:
 - Use average historical precipitation, evapotranspiration, streamflow data
 - Use existing agricultural and rural residential demands
 - Include effects of future changes in urban water demand
 - Include effects of climate change based on DWR data
- Supports evaluation of sustainability projects and management actions

22

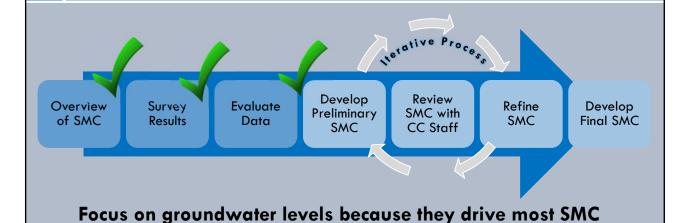
Summary of Water Budgets

- Three water budgets: historic, current, and future
- Water budgets for GSP area
- Overdraft for GSP Area

Through 2011 (pre-drought): 5,500 AFY
 Through 2016 (with drought): 13,700 AFY


• Sustainable yield in GSP area:

Through 2011 (pre-drought): 68,500 AFYThrough 2016 (with drought): 62,300 AFY


• Overdraft varies by subarea

23

Sustainable Management Criteria (SMC) (GSP Chapter 7)

Approach for Developing SMC

Complete survey results on www.pasogcp.com

25

Sustainability Indicators

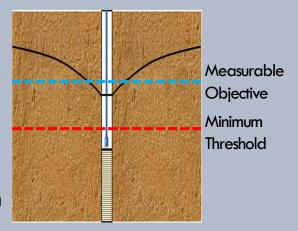
Reduction

of Storage

Quality

Subsidence

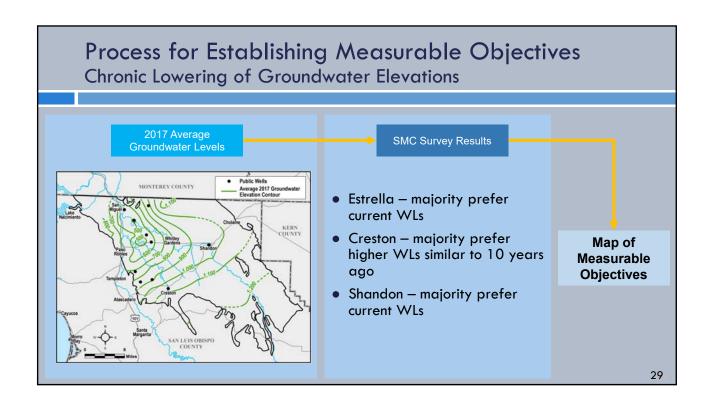
Depletion

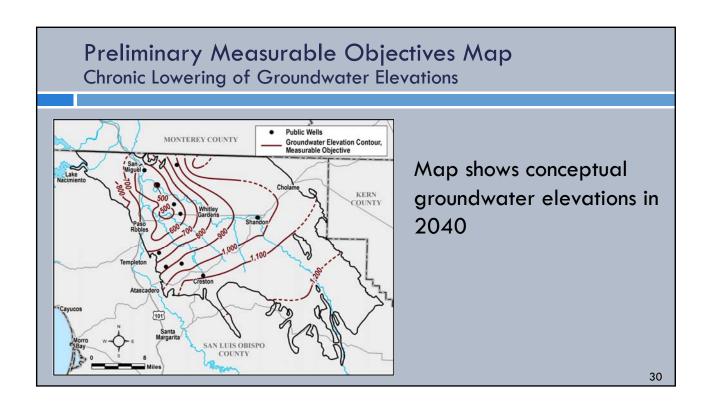

• Establish three SMC for applicable sustainability indicators

- Measurable Objectives
- Minimum Thresholds
- Undesirable Results
- Today's presentation focuses on
 - Chronic lowering of GW levels
 - Measurable Objectives and Minimum Thresholds

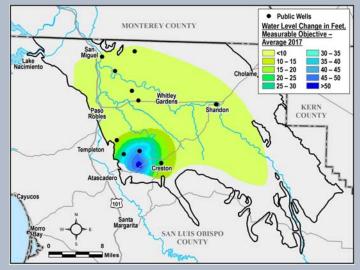
26

Measurable Objectives and Minimum Thresholds Chronic Lowering of Groundwater Levels


- Measurable Objectives
 - Average water levels in wells in 2040
 - Include operational flexibility (e.g., account for droughts)
- Minimum Thresholds
 - Minimum water levels in wells
 - Exceedance may lead to undesirable result (e.g., wells going dry)

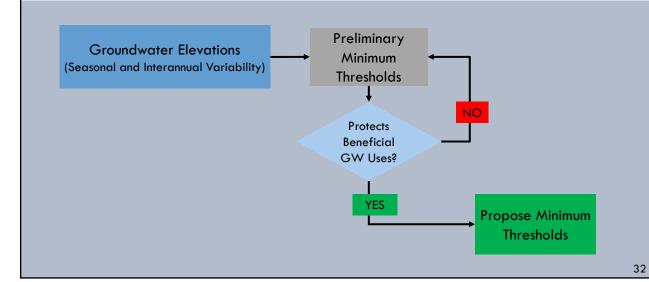


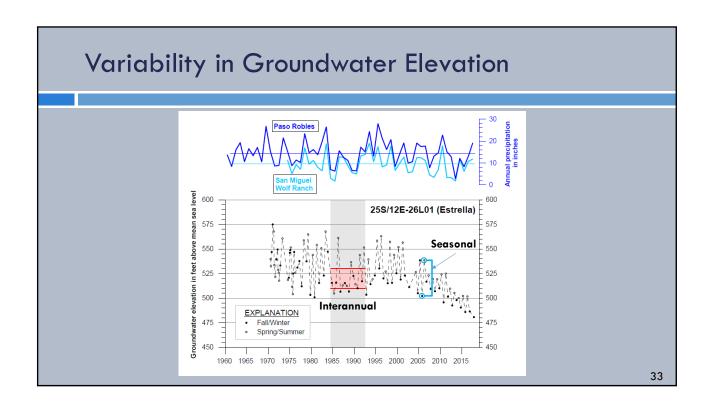
27

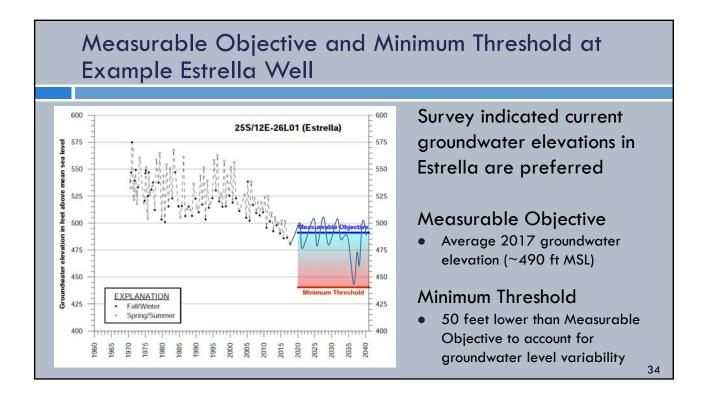

Information Used for Paso Robles GSP Measurable Objectives and Minimum Thresholds

- Groundwater levels at wells
 - "Measurable Objectives shall be based on quantitative values"
- Preferences of basin stakeholders from survey
- Check to avoid undesirable conditions
 - Undesirable conditions are adverse impacts to beneficial groundwater uses and users
 - Rural residential, agriculture, & municipalities need access to the groundwater resource

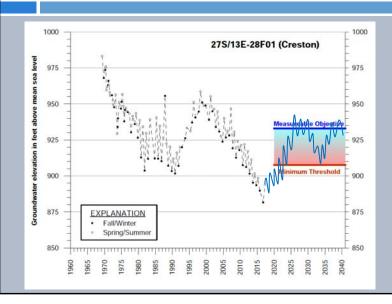
Conceptual Change in 2040 Groundwater Elevations




Map reflects:


- Higher water levels in Creston area as noted in survey results
- Water levels similar to 2017 in other areas in light green area
- Measurable Objectives will change based on sustainability projects & management actions selected to stabilize or raise water levels

31


Process for Establishing Minimum Thresholds Chronic Lowering of Groundwater Elevations

Measurable Objective and Minimum Threshold at Example Creston Well

Survey indicated higher groundwater elevations in Creston are preferred (about 2007)

Measurable Objective


 Average 2007 groundwater elevation (~933 ft MSL)

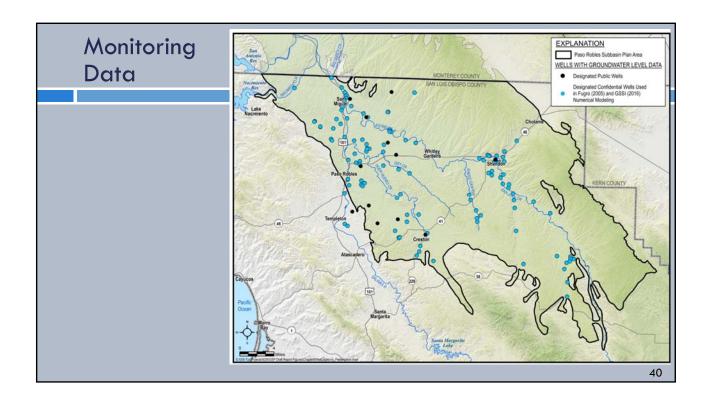
Minimum Threshold

 26 feet lower than Measurable
 Objective to account for groundwater level variability 35

Undesirable Conditions

- Consider all beneficial groundwater users
- Conceptual example: domestic wells
 - Shallow wells vulnerable
 - Maintain at least 50 feet of water in wells
 - Measurable Objectives and Minimum Thresholds established to maintain operability of most (not all) wells

Summary of SMC Development


- Establish for all sustainability indicators except seawater intrusion
- Effort to date focuses on chronic lowering of groundwater levels
- Preliminary Measurable Objectives and Minimum Thresholds are being developed at representative monitoring wells
- Next step is to schedule workshops to review and get feedback
- Refine SMC based on feedback

37

Presentation Summary

- Groundwater conditions (Chapter 5)
 - Preliminary draft chapter provided to GSA staff for review
- Water budgets (Chapter 6)
 - Historic & current WB complete
 - Future water budget work in progress
 - Subbasin in overdraft; overdraft varies by subarea
- Sustainable management criteria (Chapter 7)
 - Preliminary Measurable Objectives and Minimum Thresholds for chronic lowering of groundwater levels are being developed
 - Beginning process of reviewing and refining based on stakeholder feedback

Monitoring Data & De Minimis Extractors

