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APPENDIX 3-B 

Regional Runoff and Pollutant Loading Technical Approach 

Introduction 

This Appendix details the regional-scale modeling methods employed to support a metrics-based 
approach to stormwater project prioritization for the County of San Luis Obispo Stormwater Resource 
Plan (SWRP).  It includes the purpose and rationale for the modeling approach selected; the technical 
elements that distinguish this regional application from the more detailed, urban-area application on 
which it is based, and sample outputs and their intended usage to fulfill the needs of this SWRP. 

Model alignment with regional management needs 

Models are used to integrate the best scientific understanding of hydrology and pollutant transport to 
extend the utility of existing data, supporting estimates of stormwater impacts in locations or time 
periods for which there are no data. The use of urban hydrology and pollutant models to inform both 
short and long-term stormwater programmatic planning decisions is common (e.g., Elliot and Trowsdale, 
2007; Zoppou, 2001; Lee et al., 2012; Rossman, 2013; Voskamp and Van de Ven, 2015). A key decision 
point is determining which model to use among the alternatives available. Model selection should be 
guided chiefly via the intended use of model outputs and the necessary degree of model detail for the 
identified management purposes (Leavesley et al. 2002). Considerations for model selection typically 
include resources available, required process detail representation, time step, and spatial resolution. 
Typically, the least complex model that reliably meets the anticipated application is best (Chandler 1994, 
Rauch et al. 2002, Dotto et al. 2012), since development, input data, and computational costs tend to be 
less.   

In addition to practical considerations, model selection has scientific implications that can affect the 
ability to serve management purposes (see US EPA, 2009). Relatively complex modeling alternatives 
tend to have high input data requirements and numerous “free” parameters that require user 
calibration. Often, only a few input variables may contribute significantly to the outputs (Li et al. 2014). 
Such over-parameterization commonly results in a high degree of uncertainty in the model outputs due 
to subjective decisions required during the calibration process (Beven 1989, Beven 2001) and because 
parameter values often vary over time and space (Hossain and Imteaz, 2016). Inclusion of extraneous 
model components or parameters that do not result in a measurable output response may improve 
simulation performance, but they can fortify a model against discerning changes in a catchment over 
time (Beven 2001, Nandakumar and Mein 1997) or for testing heuristic management scenarios (Freni et 
al. 2011). Even where good hydrological data are available, such models are probably only sufficient to 
support reliable calibration of models of very limited complexity (Jakeman and Hornberger 1993, Gaume 
et al. 1998). 

For stormwater resource planning, information about where impacts are most acute, and so where 
reduction benefits can be maximized, is critical because landscape heterogeneity creates substantial 
variation in both of these factors. Since there are no long-term runoff data at drainage scales finer than 
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regional watersheds (e.g., the entirety of the upper Salinas River watershed), approaches that rely 
strongly on calibration must lump landscape characteristics to that scale and thus provide very coarse 
spatial resolution. Such approaches often rely on Hydrologic Response Units (HRUs) to characterize this 
heterogeneity, but these HRUs are not generally contiguous in space, so the attributes that are location 
specific and contribute to runoff response within a drainage is not captured explicitly. Efforts to 
transition continuous simulation to spatially explicit grid-based calculations often suffer from difficulties 
associated with distributed parameter calibration (see Pignotti et al., 2017).  

For stormwater planning purposes, hourly time-step estimates (often employed in continuous 
simulation models) may not be required to satisfy objectives; even annual time steps may often be 
sufficient. This also allows the use of decadal time-series, so that the model outputs bracket a wide 
range of plausible conditions, rather than having outputs tied to a shorter time period (albeit with finer 
time resolution) that is less likely to be representative of average long-term responses.  

Detailed process representation of evapotranspiration, subsurface flow, stream hydraulics, and 
groundwater percolation are also not essential to meaningfully address most stormwater management 
questions and would also be impractical to apply throughout the entire region. Indeed, simpler 
approaches to hydrologic modeling have often shown comparable performance to more complex ones 
(e.g., Kokkonen et al. 2001; Perrin et al., 2001; Bormann and Diekkruger, 2003; Reed et al., 2004), 
particularly at annual time steps (Beck et al., 2017).   

Recently developed decision support model alternatives 

A full review of modeling approaches available is beyond the scope of this document, but suffice to say 
that there are many available that can be broadly classified as statistical, empirical, hydraulic, and 
hydrological that differ in their spatial and temporal resolution, functionality, water quality components, 
and accessibility (see Zoppou, 2017 for a recent review). Given the considerations detailed above, we 
begin with the bounding criteria that candidate models should provide (1) spatially explicit outputs via 
(2) relatively simple process representation on (3) annual time steps to efficiently (but adequately) 
satisfy stormwater management information needs. In addition, peer review, good documentation of 
how model equations are implemented, calibration procedures, and input data processing are required 
to provide transparency to model estimates used for decision making. Open source code is beneficial 
but not necessary to facilitate scrutiny by other experts, as long as the algorithms used in the model may 
be recreated based on readily available documentation. For example, computer code that controls user 
interfaces is not essential for detailed review, and it is relatively less accessible to most scientific or 
modeling experts.   

Several simplified approaches have been recently developed in California to help communities comply 
with MS4 regulatory requirements, support stormwater resource planning and perform reasonable 
assurance analysis. These include the Stormwater Tool to Estimate Load Reductions (swTELR) developed 
in the Central Coast Region (Beck et al., 2017), the Regional Watershed Spreadsheet model developed 
for the San Francisco Bay Area (Wu et al., 2016), the Load Prioritization and Reduction model (LPR) 
developed for Santa Barbara County (Geosyntec, 2015), and the SBPAT model developed for the County 
of Los Angeles (Austin, 2010).  Each of these are intended to be used as planning-level tools and share 
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similar elements, differing primarily in their input data treatment and execution. For example, each of 
these models employ a volume–concentration approach to calculating pollutant loads, wherein loads 
are calculated as the product of runoff and empirically estimated land-use or land-cover-based pollutant 
concentrations. This approach includes the simplifying assumption that unit area runoff for 
homogeneous areas has a constant concentration of pollutants, rather than the dynamic approach 
employed in continuous simulation models such as HSPF and SWMM that allows concentrations to vary 
over time steps as short as an hour.    

Although these simplified approaches all share an equivalent conceptual foundation, they have 
significant differences that can guide the choice of the most suitable application for this SWRP. For 
example, the SBPAT model (http://www.sbpat.net/index.html) is essentially a GIS-based interface that 
requires coupling with the EPA’s SWMM. As such it requires the expertise and data requirements of that 
underlying continuous simulation model. There is no documentation of the model algorithms, 
assumptions, functionality, required data inputs, or calibration procedure provided on the model 
website; nor is there any listing of publications featuring SBPAT that have been peer reviewed.  

By comparison, the Pollutant Load Prioritization and Reduction Model (LPR) provides a simplified runoff 
accounting mechanism, but it still requires calibration to observed data. This disallows estimates at finer 
spatial resolution than the calibration scale (e.g. region-scale watersheds), since errors in one part of a 
drainage may be cancelled out by errors in another part; resulting in a calibrated parameter set that 
reflects these cancelling effects, rather than optimal values for the individual locations. A distinct 
advantage of LPR is that it provides pollutant loading for 12 different pollutants, based primarily on 
event concentration data collected in Southern California (e.g., Stein et al., 2007). The Regional 
Watershed Spreadsheet Model has a similar approach, but it uses spatially distributed rainfall inputs and 
focuses specifically on loadings of PCBs and mercury. The RWSM uses land use and impervious cover 
input data and monitoring data to specify characteristic runoff concentrations (Lent et al., 2011). 
Adequate calibration of pollutant EMC coefficients has proved difficult in the Bay Area watersheds, 
however, being a persistent source of uncertainty as estimates are strongly dependent on choice of 
calibration data sets (Wu et al., 2017). Both LPC and RWSM use runoff ratios for generation of average 
annual runoff, which is a very simple approach that provides no variation of runoff response to different 
rainfall intensities or volumes (Lent et al., 2011). The RWSM model in particular is very well 
documented, the methods of implementation have been transparently communicated, and its 
developers have included critical assessment and identification of performance deficiencies.  

Although both LPC and RWSM are credible alternatives for this SWRP, we believe that their advantages 
(and shortcomings) are largely shared by swTELR. As significant discriminator, however, is that 
communities throughout the County of San Luis Obispo have adopted and are actively using swTELR to 
support MS4 permit requirements. Therefore, the most compatible approach to regional modeling of 
runoff and pollutant loading that meets the objectives of this SWRP is a variation of swTELR that will 
ensure efficient integration of regional outputs with those from municipalities and urbanized areas of 
the County that have already been developed. TELR has the additional advantage of using the National 
Resource Conservation Service Curve Number method (NRCS-CN) for runoff generation (USDA-NRCS, 
1986), which provides variation of runoff response to different rainfall volumes. This contrasts to the 
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single-value runoff ratio method used in RWSM and LPC.  This means that swTELR produces outputs that 
characterize the shape of the rainfall probability distribution more completely than can be accomplished 
with a single value, which can only represent the central tendency of that distribution. Similar to the 
other approaches described, swTELR does not provide outputs for a particular year but instead returns 
average annual response. This is adequate for management modeling objectives as defined for this plan 
and has been judged generally acceptable for stormwater management planning (Lent et al., 2011).   

The original version of swTELR was developed for use in urban environments and has some 
shortcomings for use as a regional tool. Given the alignment of the model with the management 
objectives and its potential for seamless integration with the region’s existing investment in more 
detailed stormwater modeling, however, we believe that the optimal solution is to borrow the runoff 
and routing algorithms from TELR and modify them appropriately for regional application. This also 
allows the adoption of useful elements from other modeling approaches as appropriate. 

Regional application of TELR 

Initial development of swTELR was in predominantly urbanized catchments covering approximately 100 
acres (Beck et al., 2017). Its prior validation also emphasized urban-area applications, and so evaluating 
the accuracy and utility of the results for broader scale application is also necessary. These topics are 
addressed in turn. 

 Limitations of swTELR 

Several limitations of swTELR have already been documented for swTELR (2NDNATURE, 2016) but do 
not necessarily provide barriers to use in regional applications. The NRCS Curve Number method (NRCS-
CN) (USDA-NRCS, 1986) used in swTELR is a well-tested method, but it includes no detailed 
representation of physical hydraulic or soil processes and has shown mixed performance when 
compared with measured data (e.g., Hawkins, 1984). The NCRS-CN method does not consider rainfall 
intensity or duration, only total rainfall volume, and it assumes a uniform curve number to characterize 
runoff response for each land-use area. Confidence in the method, however, is provided by the fact that 
much more sophisticated and widely used models, such as the Soil Water Assessment Tool (SWAT), also 
employs curve numbers for runoff generation and can show comparable performance to other methods 
(e.g., King et al., 1999). The NRCS-CN method employed in swTELR strikes a middle ground of complexity 
between the simplest approaches, such as the use of single-value runoff ratios (Wu et al., 2017), and 
more complex continuous simulation models. Runoff routing and temporary storage in swTELR is 
represented only as a single parameter in the time-of-concentration calculations for stormwater 
movement towards centralized BMPs, so there is no explicit way to represent storage in the form of 
ponding. There is also no explicit representation of antecedent hydrologic conditions that may affect 
subsurface water movement, although the range of antecedent conditions is included in the curve 
number specification for each cover type. While these factors are important for predicting hourly 
hydrographs and flood forecasting, they have limited relevance for a regional planning application that 
considers only average annual responses.  
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Estimates of particulate pollutant loading in swTELR use total suspended solids (TSS) as a surrogate 
parameter, based on reviews of compiled data in the International National Stormwater BMP Database 
(http://www.bmpdatabase.org/index.htm) and the literature. Results are expressed in units of tons per 
acre per year. Extension to other pollutants, which is commonly done by many other such models, 
requires specifying runoff concentrations for those pollutants. This ought to be done with great caution, 
since even TSS, which is among the most often measured constituents, shows highly variable estimates 
for individual land uses and land cover types. Incorporation of other pollutants compounds what is 
already a substantial source of uncertainty; their inclusion in other models provides a false degree of 
precision for discerning loading response amongst individual constituents. Thus, extension of swTELR 
functionality to include additional pollutants is not a priority for this application (nor should it be for 
other such modeling efforts). 

The primary modifications that have been made to apply swTELR at a regional scale application 
(Regional TELR; hereafter “R-TELR”) are: 

• Development of distributed rainfall inputs for the entire County 
• Land-cover-based curve number specification in undeveloped areas 
• Changes to runoff generation algorithms suitable for larger spatial scales 
• Land-cover-based runoff concentrations suitable for larger spatial scales 
• Incorporation of slope effects into the runoff and TSS loading calculations 
• A simplified flow network to accommodate a more extensive drainage network 

Given the availability of spatial datasets at the 30-meter pixel scale resolution, runoff generation can be 
calculated to match the scale of variation of those inputs. This requires processing of very large raster 
data sets, which is performed with functions written in the R Statistical programming language 
(https://www.r-project.org/) and Model Builder in ArcGIS Pro from ESRI (https://www.esri.com/en-
us/home). Each step of the spatial modeling process is fully documented below; results are output in 
raster layers that are used for interim validation at each step of the processing. 

Development of distributed rainfall inputs 

Within urbanized areas, swTELR is driven by precipitation measurements from local rain gages (usually 
within an MS4 boundary), but the regional scale requires rainfall inputs in areas that are often far from 
rainfall gauge measurements. The PRISM interpolated rainfall data sets produced by Oregon State 
University (http://prism.oregonstate.edu/) provides a very good solution to estimate precipitating 
across the entire landscape. The PRISM climate group compiles climate observations from a wide range 
of monitoring networks, applies robust quality control and spatial interpolation techniques, and 
provides climate data at various spatial/temporal resolutions covering the period from the year 1895 to 
the present.  The standard products available from the PRISM Group (e.g., monthly mean values) were 
not adequate since TELR requires several percentile values from a 30+ year rainfall record to specify 
precipitation inputs. Instead, a program was created using functions written in R to acquire the 
appropriate PRISM historical raster layers for each year for the period 1981-2016 and perform a series 
of raster data processing steps. After the 35-year sequence is acquired (12,775 raster layers), they were 

http://www.bmpdatabase.org/index.htm
https://www.r-project.org/
https://www.esri.com/en-us/home
https://www.esri.com/en-us/home
http://prism.oregonstate.edu/
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stacked so that each 4 km2 pixel represents a time series of values for that grid cell. From these layers, 
percentile values that describe the shape of the precipitation data distribution were calculated for each 
pixel and these values were used to drive runoff generation in Regional TELR.  

Initial validation showed good correspondence between TELR inputs from local gauge data downloaded 
from the Western Regional Climate Center (https://wrcc.dri.edu/ ) and the PRISM-calculated percentile 
values (12.5, 50, 85, 95) for 15 Central Coast cities, with slightly lower estimates from the PRISM data 
(see Figure 3C-1). To correct the consistent bias towards underprediction of precipitation values form 
the interpolated PRISM data, a linear regression model was fit to these data to specify the bias 
correction via the equation shown in Figure 3C-1. 

 

Figure 3C-1. Correspondence between calculated percentile values for WRCC rain gauges and PRISM interpolated 
data for 15 Central Coast Cities.  

 

Changes to runoff generation algorithms 

The NRCS-CN method represents storage as an initial abstraction, which incorporates all losses before 
runoff begins, including water retained in surface depressions, water intercepted by vegetation, 
evaporation, and infiltration. Runoff does not begin until the initial abstraction has been exceeded. The 
initial abstraction is variable across the landscape but is highly correlated to the curve number (NRCS-
USDA-1986).  A value of to 5% was used in swTELR, as research indicates that this is most appropriate 
value for urbanized areas (Woodward et al., 2003; Lim et al., 2006; Shi et al., 2009), especially for the 
less-permeable hydrologic soil groups C and D (Jiang, 2001). This affects calculation of the maximum 
potential soil moisture retention after runoff begins, and in swTELR was adjusted based on model fitting 

https://wrcc.dri.edu/
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reported in the hydrologic literature (Hawkins et al., 2002; Lim et al., 2006). For R-TELR, the initial 
abstraction is set to 20% and the maximum soil moisture retention after runoff begins is returned to the 
original calculation method. Both of these components are implemented as originally specified in USDA-
NRCS (1986).  

Land-cover based curve number speciation in undeveloped areas 

Higher runoff curve numbers generate more runoff per unit amount of rainfall. In urban environments, 
the curve number is determined in swTELR via the soil type and the amount of impervious coverage, 
with curve numbers increasing linearly with additional imperviousness. This method is less applicable to 
more rural areas, where there is usually very little impervious coverage and so other factors are more 
important for determining runoff generation, such as the nature of the vegetation cover (e.g., forest vs 
grassland). For example, in development of the RWSM, Lent et al. (2011) tested specification of runoff 
ratios using both percent impervious and NLCD land cover data and found variable performance 
depending on factors such as rainfall amounts, slope, and imperviousness. Following from this example, 
R-TELR adopts a two-branched spatial data processing approach, wherein the method of curve number 
depends on the level of impervious cover. For pixels with > 5% impervious cover (usually urbanized 
areas), R-TELR employs the same method as swTELR for specifying curve numbers based on NRCS soil 
class and percent impervious cover. Outside of urbanized areas we used the NRCS soil classes in 
conjunction with the National Land Cover Dataset (NLCD), with corresponding USDA-reported land 
cover-based curve numbers (USDA, 1986) to specify curve number values (Table 3C-1; e.g., Eslinger et 
al., 2012). In natural landscapes we expect soil and vegetation storage to be more important factors 
dictating runoff response than in urbanized environments, and the curve-number specification method 
reflects this understanding. 
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Table 3C-1. NLCD Land Cover and USDA starting curve numbers for NRCS soil types before adjustments 
for impervious coverage (USDA, 1986). CRCs are median values reported in 35 separate stormwater 
quality studies and the National Stormwater Quality Database (NSQD, 2015; 
http://www.bmpdatabase.org/nsqd.html). 

NLDC Land Cover NLCD 
Category# USDA Cover Type 

NRCS Soil Type CN 

A B C D 

Developed, Hi-Intensity 24 Commercial and Business 89 92 94 95 

Developed, Medium-Intensity 23 1/8 Acre Residential 77 85 90 92 

Developed, Low Intensity 22 1/4 Acre Residential 61 75 83 87 

Developed, Open Space 21 Open Space, Fair Condition 49 69 79 84 

Cultivated Crops 82 Row Crops 67 78 85 89 

Pasture/Hay 81 Open Space, Good Condition 39 61 61 80 

Barren Land (Rock/Sand/Clay) 31 Fallow 77 86 91 94 

Grasslands/Herbaceous 71 Pasture, Grassland, Range 30 58 71 78 

Shrublands/Scrub 52 Brush 30 48 65 73 
Forest 
(Deciduous/Evergreen/Mixed) 41, 43, 43 Woods 30 55 70 77 

Wetlands  
(Woody/Emergent Herbaceous) 90, 92 - 0 0 0 0 

Open Water 11 - 0 0 0 0 

 

Land Cover based runoff concentrations 

R-TELR requires specification of characteristic runoff concentrations (CRC) to land uses beyond those 
that can be classified as urban development. Similar to swTELR, R-TELR employs a simple volume-
concentration approach, wherein   

Pollutant Load (mass/time) = stormwater runoff (volume/time) * pollutant concentration (mass/volume) 

This approach ignores the event-specific dynamics that depend on rainfall duration and intensity that 
have been linked to variations in pollutant concentrations throughout an event. For example, algorithms 
to represent pollutant build-up and wash-off over time are common in continuous simulation models 
(Freni et al., 2009; 2011; Mannina and Viviani, 2010; Hossain and Imteaz, 2016), which has been shown 
to improve pollutant modeling performance in some cases (Wang et al., 2011). An important 
disadvantage, however, is that parameters for these calculations are difficult to identify with precision 
or validate with sampling (Freni et al., 2009). While Monte Carlo sampling of the parameter space can 
improve parameter identifiability and (Strecker et al., 1990; Wagener and Kollat 2007; Freni et al., 2011), 
high degrees of uncertainty frequently persist in model outputs when calibration is required, even when 
performance is improved (Beven, 1989; Petrucci and Bonhomme, 2014). Other researchers have found 
that pollutant accumulation and generation on event time scales is extremely difficult to predict and 
that similar seasonal or annual results could be obtained using constant concentrations (Sage et al., 
2015). At the average annual scale, these effects are substantially less important than the drainage 

http://www.bmpdatabase.org/nsqd.html
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inputs and runoff volumes for explaining pollutant loads (Lee and Bang, 2000; Brezonik and Statelmann, 
2002).  

As in swTELR, the R-TELR pollutant loading module only pertains to particulate pollutants, as informed 
by total suspended solids (TSS) results. Particulate pollutant loading is used as the proxy measure for 
other pollutants, since entrainment and transport processes are similar for all particulates and large 
proportions of pollutants such as metals are often bound to particulate matter in runoff (Loganathan et 
al., 2013; Chen and Chang, 2014; Herngren et al., 2005; Sartor et al., 1972; Kayhanian et al., 2012). 
Strong correlations have been observed between particulates such as TSS and other water-quality 
constituents, including total organic carbon, nutrients, heavy metals, oil and grease (Kayhanian et al., 
2012). The assumption of correspondence between particulates and other pollutants has been tested 
directly through targeted sampling programs that include TSS and a suite of other pollutants 
(2NDNATURE 2010a, 2010b, 2014; 2NDNATURE and nhc 2012, 2014), although we acknowledge that 
these experiments were done in primarily urbanized drainages. We expect TSS to be a less useful proxy 
for non-conservative constituents, such as nitrogen, that have different fate and transport properties. 
An alternative approach would be to use the Revised Universal Soil Loss Equation (RUSLE) to calculate 
sediment yields, but other researchers have found poor correspondence between measurements and 
RUSLE estimates at the watershed scale and have specifically recommend against using it as a planning 
tool (Boomer et al., 2008). 

Similar to swTELR, R-TELR employs characteristic runoff concentrations (CRC’s), which are defined as the 
expected average annual pollutant concentration generated from a land use in a particular condition 
across a range of event types (nhc et al., 2010). While similar to event mean concentration (EMC) values 
commonly applied in stormwater modeling (e.g., Butcher, 2003), CRCs are intended to be an annual 
volume-weighted average of EMC values. Outside of MS4s, land-cover types other than ‘developed’ 
usually dominate watersheds, and so this wider array of land cover types is captured by associating the 
full range of NLCD types with individual CRCs, analogous to how CRCs are specified for urban land uses. 
A literature search identified the best CRC values based on past measurements of Total Suspended 
Solids (TSS) for different land cover types.  Table 3C-2 lists the median values for each land cover type 
obtained from a number of independent studies.  For generation of particulate pollutant loads, R-TELR 
used the median value for each land cover type listed in Table 3C-2.   
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Table 3C-2. Rural land cover types and associated TSS measurements from various researchers. Median values 
reported, unless otherwise indicated. CUL = Cultivated, PAS = Pasture, Bar = Barren, GRA = Grasslands, 
SHB = Shrubland, FOR = Forest, WTL = Wetland. 

Study 
Rural Land Cover TSS (mg/L) 

CUL PAS BAR GRA SHB FOR WTL 

Adamus and Bergman, 1995 107 55 70 55 11 11 19 

USGS, 2006  190             

Ackerman and Schiff, 2003  1191             

Tiefenthaler, et al. 2008 88             

Stein et al. 2007 112             

Tetra Tech, 2010 (mean) 355             

Line et al. 2002   143       113   

Line, 2015   422           

Line et el, 2016   350           

Bartley and Speirs, 2010  3104 259       26   

Packet, et al., 2009 612             

Jarvelein, 2014 580 40   40 40 40   

Line, 2003   65           

 

As previously noted, measured runoff concentrations show high variance within individual land cover 
types, and some land cover types have few measurements available. While our current literature search 
is not exhaustive, it should be noted that other approaches often rely on only a single source for 
specifying concentration values (e.g., Eslinger et al., 2012). For R-TELR we calculated the median TSS 
values for each land cover type, which helps reduce the effects of extreme values when characterizing 
central tendency. CRCs for urban land-use types used in swTELR are based on 23 literature studies, along 
with analysis of the National Stormwater BMP Database that includes thousands of individual 
measurements from hundreds of individual studies. For R-TELR, we binned each of the urban land-uses 
into one or more of the NLCD and calculated median values for each of those urban land uses (Table 3C-
3).  
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Table 3C-3.  Median concentration values for used for R-TELR CRCs. COM = commercial, IND = industrial, SFR = single 
family residential, MFR = multi-family residential, OTH = other HTR = high traffic road, MTR =moderate 
traffic road, LTR = low traffic road. 

NLDC Land Cover  Class # swTELR Urban Land Use CRC 
(mg/L) 

Developed, Hi-Intensity 24 HTR, MTR, IND, COM, MFR 104 

Developed, Medium-Intensity 23 MTR, LTR, SFR, OTH 99 

Developed, Low Intensity 22 LTR, SFR, OTH 88 

Developed, Open Space 21 OTH 15 

Cultivated Crops 82  355 

Pasture/Hay 81  143 

Barren Land (Rock/Sand/Clay) 31  70 

Grasslands/Herbaceous 71, 72  48 

Shrublands/Scrub 51, 52  26 

Forest Deciduous/Evergreen/Mixed 41, 42, 43  33 

Wetlands (Woody/Emergent Herbaceous) 90. 95  19 

 

Incorporation of slope effects 

Slope has a more important effect on runoff generation and subsequent pollutant loading in natural 
landscapes compared the urbanized environments where much of the cover is impervious surfaces.  
Runoff generation is affected by reduction of the initial abstraction (Fox et al., 1997; Chaplot and 
Bissonnais, 2003), a decrease in infiltration, and a reduction of the recession time of overland flow 
(Evett and Dutt, 1985).  The NRCS-CN does not take slope into account because it was developed in 
cultivated landscapes, where slopes are generally less than 5%.  Experiments on steeply sloping plots 
indeed show that they yield considerable more runoff (Sharma, 1986). Given the conceptual logic for 
incorporation of a slope parameter to the NRCS-CN method, a number of approaches to modification 
have been reported in the literature (Williams, 1995; Huang et al., 2006, Huang; Strehmel et al., 2014). 
While none of these have yet have been incorporated into the continuous simulation SWAT model, 
which also use the NRCS-CN, citing some mixed performance results (e.g., Ebrahimian et al., 2012), their 
potential for improving runoff and pollutant loading estimates is recognized in the recent model update 
documentation (USDA-NRCS, 2017). 

Here, we employ the empirical method developed by Huang et al. (2006), who studied the effect of 
slope on runoff volumes under simulated rainfall for 11 years to modify the existing standard NRCS-CN 
method for land slope. They developed a slope adjusted CN empirical equation as follows: 

𝐶𝐶𝐶𝐶2𝛼𝛼 = 𝐶𝐶𝐶𝐶2  
322.79 + 15.68(𝛼𝛼)

𝛼𝛼 + 323.52
 

…where CN2 is the NRCS handbook for average moisture condition, CN2α is the adjusted CN for a given 
slope, and A is slope (m∙m-1) between 0.14 and 1.4 (14-140%).  Slope was calculated using a 30-meter 
pixel resolution digital elevation model (DEM) for San Luis Obispo County and the slope tool in ArcGIS 
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Pro. Slopes greater than 14% are within the domain of this CN adjustment and are shown in Figure 3C-2, 
with the steepest slopes generally occurring in the Southern Santa Lucia Mountains just east of the City 
of San Luis Obispo. 

 

 

Figure 3C-2. Calculated slope from 30-m DEM for SLO County used for adjustment of curve numbers. 

 

Thus, curve number calculated for each pixel in R-TELR were adjusted to incorporate the influence of 
slope on runoff generation throughout the County.  The net result will be somewhat greater runoff 
generation and pollutant loading in these areas than would have occurred without this slope 
adjustment.   

Simplified routing and spatial aggregation scale 

Although the calculations in R-TELR are made at the 30-m pixel scale, they can be aggregated to larger 
areas, such as the CalWater “Planning Watershed” scale CalWater (v.2.2.1) (approximately 10,000 
acres), for hydrologic routing (if required) and integration with other spatial datasets used to identify 
stormwater opportunities. Runoff outputs are shown at their full 30-m resolution in Figure 3C-3 with the 
Planning Watersheds overlaid. The highest average annual runoff values occur in densely urbanized 
areas with high proportions of impervious cover, such as the City of San Luis Obispo, and mountainous 
areas such as the Santa Lucia Range that tend to receive more rainfall and/or have steeper slopes. The 
gridded pattern than can be seen in Figure 3C-3 is due to PRISM rainfall grid, which at 4 km is much 
coarser than the NRCS Soils and NLCD land cover and impervious datasets (30 m).  
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Figure 3C-3. Spatially distributed average annual runoff throughout the County, expressed in acre-feet per year per 
30-m pixel. 

 

These results can be aggregated into larger polygons to show area-normalized runoff and particulate 
loading (see Figure 3C-4 and Figure 3C-5 for the Salinas Watershed Group).  These outputs are 
calculated for each of the Watershed Groups separately to illustrate relative runoff and pollutant 
loading impacts within each Watershed Group, and also for each Planning Watershed within the County 
collectively. Darker Planning Watersheds illustrate relatively higher estimated runoff and pollutant 
loading per unit drainage area, indicating higher potential for receiving water impacts. As anticipated, 
Planning Watersheds with high levels of human disturbance show greater runoff and pollutant loading. 
Those Planning Watersheds in the Upper Salinas that contain substantially urbanized areas, such as the 
City of Atascadero, show the greatest relative runoff volumes. Cultivated areas between Atascadero and 
Paso Robles include Planning watershed that fall into the highest pollutant loading category.  
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Figure 3C-4. Runoff estimates from R-TELR aggregated to the Planning Watershed scale for the Salinas Watershed 

Group. 

 
Figure 3C-5. Particulate pollutant loading estimated from R-TELR aggregated to the Planning Watershed scale for 

the Salinas Watershed Group. 
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In urbanized areas of the County with MS4 NPDES permits (shown as gray areas in Figure 3C-6), runoff 
and pollutant modeling using swTELR has been completed at the urban catchment scale (approximately 
100 acres). Via swTELR, runoff is routed sequentially downstream from one catchment to the next.  
Since these urban catchment boundaries depend primarily on the stormwater infrastructure and urban 
hardscape, there is often poor alignment between these drainages and CalWater Planning Watersheds 
(see Figure 4). Consequently, runoff and pollutant modeling were performed separately at these two 
spatial scales and then combined to identify opportunities at these two nested spatial drainage scales. In 
this manner, projects located within a high priority Planning Watershed and also a high priority urban 
catchment would receive the highest opportunity score relative to these model-based metrics. 

 
Figure 3C-6.  Watershed Groups and MS4 areas within the County.  

 

R-TELR Runoff Verification 

Since TELR was developed and validated in primarily urbanized watersheds, full validation in watersheds 
with mostly undeveloped land-cover types has not yet been performed.  Comparisons with the swTELR 
outputs primarily urbanized catchments shows good correspondence with no systematic bias and only 
random scatter that is primarily due to the distributed rainfall inputs and more granular soils data used 
in R-TELR (see Figure 3C-7).  Outside of the urbanized catchments, where much of the area has 
impervious cover of < 5%, estimates from swTELR and R-TELR diverge more markedly, primarily due to 
NLCD land-cover-based curve number specification in these areas. This effect can be seen as data points 
that fall farthest below the 1-to-1 line, indicating much lower runoff predictions for R-TELR than for 
swTELR.  Comparisons with swTELR outputs provide confidence that the runoff generation algorithms 
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are working as intended, but it still does not provide direct evidence of R-TELR model accuracy, which 
requires comparisons with measured data. The fact that the runoff generation algorithms used in R-TELR 
have been tested in many regional-scale applications as part of other modeling platforms (e.g., USDA 
SWAT), provides a good deal of confidence that the estimates may as reliable as any other model that 
functions on similar time and spatial scales. Nonetheless, comparison with measured data is a valuable 
exercise to determine the usefulness of estimates in a decision-making context (e.g., Wu et al., 2016). 

 

Figure 3C-7. Validation experiment results comparing swTELR outputs with those of R-TELR for 63 urban catchments 
within the City of Watsonville.  
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