Paso Basin Cooperative Committee

NOTICE IS HEREBY GIVEN that the Paso Basin Cooperative Committee will hold a Regular Meeting at **4:00 P.M. on Wednesday, October 17, 2018** at the City of Paso Robles Council Chambers (1000 Spring St., Paso Robles, CA 93446).

NOTE: The Paso Basin Cooperative Committee reserves the right to limit each speaker to three (3) minutes per subject or topic. In compliance with the Americans with Disabilities Act, all possible accommodations will be made for individuals with disabilities so they may attend and participate in meetings.

John Hamon, Chairperson, City of Paso Robles Reginald Cousineau, Member, Heritage Ranch CSD Joe Parent, Member, San Miguel CSD John Peschong, Vice Chairperson, County of SLO Willy Cunha, Secretary, Shandon-San Juan WD Steve Martin, Alternate, City of Paso Robles
Scott Duffield, Alternate, Heritage Ranch CSD
Kelly Dodds, Alternate, San Miguel CSD
Debbie Arnold, Alternate, County of SLO
Matt Turrentine, Alternate, Shandon-San Juan WD

Agenda October 17, 2018

- 1. Call to order
- 2. Pledge of Allegiance
- 3. Roll call
- 4. Public Comment items not on Agenda
- 5. Approval of September 12, 2018 Meeting Minutes
- 6. Consider recommending that each GSA receive and file Paso Robles Subbasin GSP Draft Sections and provide direction as necessary
 - a. Chapter 4. Hydrogeologic Conceptual Model (Revised)
 - b. Chapter 5. Groundwater Conditions
- 7. Project Status Update
 - a. Budget
 - b. Schedule
 - c. Projects and Management Actions
- 8. Committee Member Comments Committee members may make brief comments, provide status updates, or communicate with other members, staff, or the public regarding non-agenda topics

9. Upcoming meetings

- a. Regular Meeting January 23, 2018
- **10. Future Items**
- 11. Adjourn

	The following members or alternates were present: John Hamon, Chair, Member, City of Paso Robles John Peschong, Vice Chairperson, County of San Luis Obispo Willy Cunha, Secretary, Member, Shandon-San Juan WD Reginald Cousineau, Member, Heritage Ranch CSD Kelly Dedds, Member, San Miguel CSD					
1	Call to Order	Chairperson Hamon calls the meeting	to order	r at /100	DM	
1.		Champerson Hamon cans the meeting		ai 4.00)1 IVI.	
2.	Pledge of Allegiance	Vice Chair Peschong leads the Pledge of Allegiance.				
3.	Roll call	County Staff, Angela Ruberto: calls roll.				
4.	Public Comment – Items not on the Agenda	Chairperson Hamon: opens and closes Items not on the Agenda.	Chairperson Hamon: opens and closes the floor for public comment on Items not on the Agenda.			
		No public comments received.				
5.	Approval of July 25, 2018 Meeting Minutes	 Chairperson Hamon: moves to discuss approval of July 25, 2018 Cooperative Committee meeting minutes and comments that he is appreciative of the level of detail included in the Meeting Minutes. Chairperson Hamon: opens floor for public comment and, seeing none, closes public comment. Motion By: Secretary Cunha Second By: Vice Chairperson Peschong Motion: The Committee moves to approve Meeting Minutes from July 25, 2018. 				
		Members	Ayes	Noes	Abstain	Recuse
		John Hamon (Chairperson) X				
		John Peschong (Vice Chairperson)	X			
		Reginald Cousineau (Member)				
		Kelly Dodds (Alternate Member) X				
6.	Receive undate of	Meeting handouts and Presentation for Agenda Item #6 available at:				
0.	approach to Public	https://www.slocountywater.org/site/Water%20Resources/SGMA/paso/				
	Comment and					
	Groundwater	County Staff, Angela Ruberto: presents an overview of approach to				
	Sustainability Plan (GSP)	Public Comment and Groundwater Sustainability Plan (GSP) Chapters				
	Chapters Keview and	keview and Approval of GSP.				
	πρρισται	Chairperson Hamon: states that the Comment Form on Step Two of the Six Step Public Comment Process Flow Chart (see Agenda) will be				

	critical for public engagement; appreciates the recording and review process, noting the ability to see how issues were addressed.
	Vice Chairperson Peschong: asks if public comments and responses will be published online.
	County Staff, Angela Ruberto: Responds that all public comments will be published online once the responses have been finalized; references Step 6, stating that the Final Public Draft GSP will be posted with a summary list of comments and responses.
	Chairperson Hamon: opens the floor for public comment and, seeing none, closes public comment; emphasizes the importance of providing input on the Draft GSP Chapters during the commenting window.
7. Project Status Update	Meeting handouts and Presentation for Agenda Item #7 available at: https://www.slocountywater.org/site/Water%20Resources/SGMA/paso/
	Montgomery & Associates, Derrik Williams: presents an update on the GSP Schedule.
	Montgomery & Associates, Tim Leo: presents an update on development of the Groundwater Conditions, Water Budgets, Sustainable Management Criteria.
	Montgomery & Associates, Tim Leo: states that that the water budget analysis shows a difference between averages from 1981-2011 and 2012- 2016; this difference emphasizes the significance/impact of the low recharge period.
	Montgomery & Associates, Derrik Williams: presents on Monitoring Data and De Minimis Extractors.
	Chairperson Hamon: asks how many wells with publicly available data are needed for reporting water level data.
	Montgomery & Associates, Derrik Williams: responds that it depends on what the California Department of Water Resources (DWR) finds acceptable–specific metrics have not been provided; recommends making an honest effort for a reasonable number of wells to prove to DWR that monitoring is performed sufficiently and at an acceptable, basin-wide level; if deemed not sufficient by DWR, there may be a need to drill monitoring wells.
	Chairperson Hamon: opens the floor for comments from the Committee and then the public on Chapter 5, 6, and 7–no comments received.

		Chairperson Hamon: asks Derek Williams if there is an estimated number of de minimis pumpers in the Basin; comments that the number of pumpers could be substantial.
		Montgomery & Associates, Derrik Williams: responds that there have been estimated numbers in the past, ranging from 3-13%; still need to determine what total percentage of pumping de minimis extractors account for throughout the Basin.
		Secretary Cunha: states that presentations are available online and the public is encouraged to review information and submit comments to the GSAs using forms on the pasogcp.com site.
		Chairperson Hamon: opens the floor for public comment.
		Ann Myhre: speaks.
		Chairperson Hamon: closes the floor for public comment.
8.	Consider recommending that each GSA receive and file Paso Robles Subbasin GSP Draft Chapter 4 - Hydrogeologic Concentual	Montgomery & Associates, Derrik Williams: gives an update on GSP Draft Chapter 4; recommends that each GSA receive, file and provide comments on Draft Chapter 4 - Hydrogeologic Conceptual Model; the comment period will be open for 45 days.
	Model	Chairperson Hamon: opens the floor to questions from the Committee.
		Vice Chairperson Peschong: comments that he has received concern from the public regarding the term "groundwater banking" on page 29 of Draft Chapter 4; reiterates the importance of providing input during the public comment period for any questions or concerns.
		Montgomery & Associates, Derrik Williams: also reiterates the importance of public input during the commenting period.
		Chairperson Hamon: opens the floor for public comment.
		County Alternate Member, Debbie Arnold: Referring to page 29, Section 4.7.1 of Draft Chapter 4, asks if the information and map came from a County funded 2005 groundwater banking feasibility study; is uncomfortable with the way the section was written; does not believe that groundwater banking on private property should be included in the GSP–should instead focus on natural or purchased recharge as a way to achieve sustainability.
		Chairperson Hamon: asks where the map referenced in Debbie Arnold's comment originated.

	~~ F					
	Montgomery & Associates, Derrik Williams: responds that the map originated from a UC Davis Statewide Study and was pulled from their website, noting that there is a SGMA requirement to map areas of recharge.					
Secretary Cunha: explains the original source of the map is the S Survey of the County performed by the Soil Conservation Servic (SCS) and the beneficial intent of the map; comments that the lar used is unfortunate.						
	Vice Chairperson, John Peschong: asks when the 45-day commen period will begin.					
	County Staff, Angela Ruberto: responds that the 45-day commperiod will begin once the Draft Chapter has been uploaded to GCP website–a week from this meeting date. Agenda Item 6 Presentation shows public comment period for Chapter 4 is an to span $9/19/18 - 11/3/18$.					
	Motion By: Secretary Cunha					
	Second By: Vice Chairperson Peschong					
	Motion: The Committee moves to receive and file Paso Robles Subhasin GSP Draft Chapter 4 - Hydrogeologic Conceptual Model					
	Members Ayes Noes Abstain Recuse					
	John Hamon (Chairperson) X					
	John Peshong (Vice Chairperson)XWilly Cunha (Secretary)X					
Reginald Cousineau (Member)X						
Kelly Dodds (Alternate Member) X						
9. Receive update on supporting efforts	Secretary Cunha: provides an update Services opportunity to support GSP discusses potential well locations and overview of the application process a First step is to submit a General App specific Project Application.	on DWF develop: 1 ability and roles lication,	R Techn ment/fil to retrie of GSA next ste	ical Suppo ling data g ve data; pr s providin p is to sub	ort gaps; ovides ng input. mit a	
	develop/submit application] and ability to proceed at the rate required					
County Staff, Angela Ruberto: states that staff of the GSA working together on developing projects for the DWR's T Support Services application that and are comfortable with San Juan Water District submitting the application and ser Point of Contact.				GSAs hav R's Technic with Sha d serving	e been ical ndon- as the	

	1 /				
	Vice Chairperson Peschong: requests constructed in District 1 or District 5 expenditure/contracts and specific loc come back to Cooperative Committee Secretary Cunha: Confirms that every	s that m cemete cations e for ap ything	onitorin eries; ask for mon oproval. related v	g wells no ks if all hitoring we vill be brou	t be lls will 1ght back
	to the Committee for approval.				
	Committee discusses importance of moving ahead and taking opportunity for DWR's Technical Support Services; Secretary Cunha introduces DWR Staff Ben Gooding and Trent Sherman (in attendance). Trent Sherman is replacing Ben Gooding as our Basin's DWR SGMA Rep.				
	Motion By: Secretary Cunha				
	Second By: Alternate Member Dodd	ls racaiva	undata	on Support	ina
	Effort and application for DWR's Te	chnica	l Suppor	t Services.	ing
	Members	Ayes	Noes	Abstain	Recuse
	John Hamon (Chairperson)	X			
	John Peschong (Vice Chairperson) X				
	Willy Cunha (Secretary) X				
	Reginald Cousineau (Member)	X			
	Kelly Dodds (Alternate Member)	Х			
10. Committee Member Comments	Secretary Cunha: reiterates the importance of the public providing GSP Chapter comments and input during the open public comment period.				
	Vice Chairperson Peschong: emphasic commenting portal tools (Comment I for providing input on Draft Chapters being submitted.	izes the Form av s; fores	e importa vailable ees man	ance of usi at PasoGC y online co	ng the P.com) omments
11. Upcoming Meetings	Next meeting: Regular Meeting set for 4:00PM, Location: Paso Robles - Cit	or Wed y Coun	nesday, cil Char	October 1' nbers.	7, 2018 at
12. Future Items	No future Items discussed.				
13. Adjourn	Motion By: Chairperson Hamon Second By: Secretary Cunha Motion: The Committee moves to adjourn the meeting				
	Members	Ayes	Noes	Abstain	Recuse
	John Hamon (Chairperson)	X			

1			
John Peschong (Vice Chairperson)	Х		
Willy Cunha (Secretary)	Х		
Reginald Cousineau (Member)	Х		
Kelly Dodds (Alternate Member)	X		

I, Willy Cunha, Secretary to the Paso Basin Cooperative Committee, do hereby certify that the foregoing is a fair statement of the proceedings of the meeting held on September 12, 2018, by the Paso Basin Cooperative Committee.

Willy Cunha, Secretary of the Paso Basin Cooperative Committee. Drafted by: Joey Steil and Angela Ruberto, County of San Luis Obispo

PASO BASIN COOPERATIVE COMMITTEE October 17, 2018

Agenda Item #6 – Consider recommending that each GSA receive and file Paso Robles Subbasin GSP Draft Sections and provide direction as necessary

SUBJECT

Consider recommending that each GSA receive and file Draft GSP Chapters and provide direction as necessary.

RECOMMENDATION

It is recommended that the Paso Basin Cooperative Committee (Committee) receive and consider recommending that each GSA receive and file Paso Robles Subbasin GSP Draft Chapter 4 - Hydrogeologic Conceptual Model (revised 10/10/2018) and Draft Chapter 5 – Groundwater Conditions (10/10/2018).

	GSP Chapter	Status
1	Introduction to Paso Robles Subbasin GSP	Public comment period close: 10/15/2018
2	Agency Information	Public comment period close: 10/15/2018
3	Description of Plan Area	Public comment period close: 10/15/2018
4	Hydrogeologic Conceptual Model	Revision to be considered by Committee on 10/17/18
5	Groundwater Conditions	To be considered by Committee on 10/17/18
6	Water Budget	Under Development, anticipated 1/23/2019
7	Sustainable Management Criteria	Under Development, anticipated 1/23/2019
8	Monitoring Networks	Under Development, anticipated 1/23/2019
9	Projects and Management Actions	Under Development, anticipated 4/24/2019
10	Plan Implementation	Anticipated 4/24/2019
11	Notice and Communications *C&E Plan	Under Development, anticipated 4/24/2019 Public comment period close: 10/15/2018 (*C&E Plan only)
12	Interagency Agreements	Anticipated 4/24/2019
13	Reference List	Anticipated 4/24/2019

PREPARED BY

Not Applicable – See attached Draft GSP Chapter 4 and Chapter 5, provided by the GSP Consultant.

BACKGROUND

Draft GSP Chapter 4 – Hydrogeologic Conceptual Model was considered by the Committee on September 12, 2018, revised on October 10, 2018, and is brought back to the Committee with Draft GSP Chapter 5 for consideration to recommend that the GSAs receive and file. Changes to the Draft Chapter 4 include formatting, removal of duplicate map, and updates to Section 4.7 Groundwater Recharge and Discharge Areas. The updates to Section 4.7 clarify use of the SAGBI map in the section strictly as a dataset for evaluating recharge potential.

ATTACHED

- 1. Presentation: Draft GSP Chapters 4 and 5
- 2. Draft Chapter 4. Hydrogeologic Conceptual Model (revised 10/10/2018)
- 3. Draft Chapter 5. Groundwater Conditions (10/10/2018)

* * *

PASO ROBLES SUBBASIN GSP DEVELOPMENT

Chapters 4 and 5

Paso Robles Basin GSAs

City of Paso Robles County of San Luis Obispo Heritage Ranch CSD San Miguel CSD Shandon-San Juan Wate<u>r District</u>

October 17, 2018

Chapter 4 (revised) Hydrogeologic Conceptual Model

Receive and Recommend each GSA receive and file

Chapter 4 – Hydrogeologic Conceptual Model

- A description of the physical characteristics of the Subbasin
- Not mathematical description
- Includes things like:
 - Number and description of aquifers
 - Areas of natural recharge
 - Areas of natural discharge
 - Groundwater/river interactions

Chapter 4 – Hydrogeologic Conceptual Model

- Initially presented to CC on Sept. 12; revisions requested to remove term "water banking" to describe soil characteristic for recharge
- CC recommend GSAs receive & file Chapter 4 at Oct 17 meeting
- Satisfies GSP Regulations §354.14
- Required by regulations to align with <u>sustainability indicators</u>:

Two Aquifers in Paso Robles Subbasin

Alluvial Aquifer (yellow areas)

- Coarse-grained sediments along rivers & streams
- Up to about 100 ft thick
- High well yields (some > 1,000 gpm)
- About 5% of basin pumping from alluvium (from groundwater model

Paso Robles Form. Aquifer (brown areas)

- Mix of coarse and fine grained zones
- Generally 700 to 1,200 feet thick
- Well yields vary from 100s to over 1,000 gpm
- About 95% of basin pumping from PRFm

Conceptual Cross-Section of Aquifers

6

Potential Recharge Areas

- SAGBI rating developed at UC Davis and UC ANR
- Ranks soil suitability for groundwater recharge
- Excellent recharge properties in green (along river channels)

Groundwater Dependent Ecosystems (Appendix 4B)

- GDE methodology developed by The Nature Conservancy
- Identifies area where water table is sufficiently high that it may discharge to land surface (springs, seeps, streams)
- Map shows only potential GDEs; not field verified

Summary of Hydrogeologic Conceptual Model

- Two main aquifers
 - Paso Robles Aquifer and Alluvial Aquifer
- Potential Recharge areas:
 - Mapped based on soil type by UC methodology
- Potential GDEs
 - Mapped based on shallow water levels based on TNC methodology
- Rivers and Creeks significantly recharge the aquifers

Chapter 5 Groundwater Conditions

Receive and Recommend each GSA receive and file

Chapter 5 - Groundwater Conditions

- Satisfies GSP Regulations §354.16
- CC recommend GSAs receive & file Chapter 5 at Oct 17 meeting
- Contents required by regulations align with sustainability indicators:

Source of Data

- Whenever possible, groundwater conditions are based on existing data
 - Groundwater levels
 - Groundwater quality
 - Groundwater trends
- Some analyses, such as the amount of groundwater in storage, are based on the refined groundwater model
 - Originally developed in 2005
 - Refined in 2014, 2016, and 2018
 - 2018 model has the same pumping assumptions as the earlier models

Groundwater Elevations Paso Robles Formation Aquifer

Change in Groundwater Elevations 1997 to 2017 (spring) – Paso Robles Formation Aquifer

Observations:

- Decline in GW elevation over most of subbasin
- Areas of largest decline in Estrella and El Pomar areas
- Declines in groundwater elevations result in depletion of groundwater in storage

Change in Groundwater Storage

- Overall losing water from storage
- Average storage loss is 5,500 acre-feet per year from 1981 to 2011
 - From groundwater model built in 2005 and refined in 2014, 2016, 2018
- Loss of groundwater storage is not equally distributed across the basin.

Subsidence

- No direct measurements
- Some satellite data suggest small ground surface drops over
- Not a significant concern

Interconnected Surface Water

- Estimated locations of rivers and creeks that are historically in connection with the groundwater during part of Summer and Fall
- Appreciate feedback

Image: Construction of the state of the	A	GAINING STREAM	В	LOSING STREAM	м.
C LOSING STREAM THAT IS DISCONNECTED FROM THE WATER TABLE For direction Unsublication Over the state of the s	Saturate	Flow direction Unsaturated zon Water table	Water table	For direction	
		C LOSING STREAM	M THAT IS DISCONNECTE THE WATER TABLE Flow direction	D T T T T T T T T T T T T T T T T T T T	
Adopted from USG5, 1999			Adop	oted from USGS, 1999	

Interconnected Surface Water

Groundwater Quality

- Based on
- The 2015 Salt and Nutrient Management Plan
- State records
- Other reports
- No new significant issues

Summary of Groundwater Conditions

- Groundwater elevations: General declines from 1997 to 2017, varies over Subbasin
- Groundwater in storage: Historically decreasing in the subbasin by an average of 5,500 acre-feet/year. Likely decreasing faster now
- Subsidence: Not a significant problem
- Interconnected surface water: Limited areas. Looking for feedback
- Groundwater quality: No new concerns since the 2005 SNMP

DRAFT

Chapter 4

Paso Robles Subbasin Groundwater Sustainability Plan

Originally Published on:	September 5, 2018
Originally Received by the Paso Basin Cooperative Committee:	September 12, 2018
Revision Published on:	October 11, 2018
Revision to be Received by the Paso Basin Cooperative Committee	October 17, 2018
Revision Posted on PasoGCP.com:	October 24, 2018
Close of 45-day public comment period:	*December 10, 2018
*pending recommendation by the Cooperative Committee at the	
October 17, 2018 Regular Meeting	

Revisions have been proposed to Section 4.7 of the Draft GSP Chapter 4 that was originally received by the Cooperative Committee at the September 12, 2018 Special Meeting. This revised Draft GSP Chapter 4 (attached) is available for public review and comment and will be brought back to the Committee at the October 17, 2018 Regular Meeting. Comments from the public are being collected using a comment form available at <u>www.pasogcp.com</u>. If you require a paper form to submit by postal mail, please contact your local Groundwater Sustainability Agency (GSA).

- <u>County of San Luis Obispo</u>
- Shandon-San Juan Water District
- Heritage Ranch CSD
- San Miguel CSD
- <u>City of Paso Robles</u>

Pending the Cooperative Committee's recommendation on October 17, 2018, the attached revised Draft GSP Chapter 4 will be distributed to the five Paso Robles Subbasin GSAs to receive and file.

Draft Paso Robles Subbasin Groundwater Sustainability Plan Chapter 4

Prepared for the Paso Robles Subbasin Cooperative Committee and the Groundwater Sustainability Agencies

October 10, 2018

This page intentionally left blank

TABLE OF CONTENTS

CHAPTER 4. Hydrogeologic Conceptual Model	1
4.1 Subbasin Topography and Boundaries	1
4.2 Soils Infiltration Potential	5
4.3 Regional Geology	7
4.3.1 Regional Geologic Structures	7
4.3.2 Geologic Formations Within the Subbasin	16
4.3.3 Geologic Formations Surrounding the Subbasin	17
4.4 Principal Aquifers and Aquitards	20
4.4.1 Alluvial Aquifer	25
4.4.2 Paso Robles Formation Aquifer	25
4.4.3 Aquifer Properties	25
4.4.4 Confining Beds and Geologic Structures	27
4.5 Primary Users of Groundwater	28
4.6 General Water Quality	28
4.7 Groundwater Recharge and Discharge Areas	29
4.7.1 Groundwater Recharge Areas Inside The Subbasin	29
4.7.2 Groundwater Discharge Areas Inside the Subbasin	31
4.8 Surface Water Bodies	34
4.9 Data Gaps in the Hydrogeologic Conceptual Model	36

LIST OF FIGURES

Figure 4-1. Paso Robles Subbasin Topography	2
Figure 4-2. Base of Subbasin as Defined by the Base of the Paso Robles Formation	4
Figure 4-3. Paso Robles Subbasin Soil Characteristics	6
Figure 4-4. Surficial Geology and Geologic Structures	8
Figure 4-5. Cross Sections Locations	9
Figure 4-6. Geologic Section A-A'	10
Figure 4-7. Geologic Section B-B'	11
Figure 4-8. Geologic Section C-C'	12
Figure 4-9. Geologic Section G-G'	13
Figure 4-10. Geologic Section H-H'	14
Figure 4-11. Natural Gas Exploration Well Locations and Geothermal Wells	18
Figure 4-12. Aquifers - Geologic Section B-B'	21
Figure 4-13. Aquifers - Geologic Section C-C'	22
Figure 4-14. Aquifers - Geologic Section G-G'	23
Figure 4-15. Aquifers - Geologic Section H-H'	24
Figure 4-16. Potential Recharge Areas	30
Figure 4-17. Potential Groundwater Discharge Areas	32
Figure 4-18. Potential Groundwater- Dependent Ecosystems	33
Figure 4-19. Surface Water Bodies	35

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

LIST OF TABLES

Table 4-1.	Paso Robles Subbasin Aquifer Hydrogeologic Properties	. 26
Table 4-2.	Paso Robles Subbasin Specific Yield Estimates	. 27
Table 4-3.	Summary of General Water Quality by Area	. 28

LIST OF APPENDICES

Appendix 4A. Additional Well Logs Used to Supplement Cross Sections Appendix 4B. Paso Robles Basin GSP: Identification of Groundwater Dependent Ecosystems

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

CHAPTER 4. HYDROGEOLOGIC CONCEPTUAL MODEL

This chapter describes the hydrogeologic conceptual model of the Paso Robles Subbasin, including the Subbasin boundaries, geologic formations and structures, and principal aquifer units. The chapter also summarizes general Subbasin water quality, the conceptual interaction between groundwater and surface water, and generalized groundwater recharge and discharge areas. This chapter draws upon previously published studies, primarily hydrogeologic and geologic investigations by Fugro Consultants Inc. completed for San Luis Obispo County in 2002 and 2005. Fugro Consultants' 2002 and 2005 reports are the definitive geologic reports of the Subbasin. All subsequent investigations, such as the 2016 groundwater model update, adopted the geologic interpretations of the 2002 and 2005 Fugro Consultant reports. The Hydrogeologic Conceptual Model presented in this chapter is not intended to be exhaustive, but is a summary of the relevant and important aspects of the Subbasin hydrogeology that influence groundwater sustainability. More detailed information can be found in the original reports (Fugro, 2002 and 2005). This chapter, along with Chapter 3 – Basin Setting, sets the framework for subsequent chapters on groundwater conditions and water budgets.

4.1 SUBBASIN TOPOGRAPHY AND BOUNDARIES

The Subbasin is a structural northwest-trending trough filled with sediments that have been folded and faulted by regional tectonics. The top of the Subbasin is the ground surface. The elevation of the Subbasin ranges from approximately 2,000 feet above mean sea level (msl) at the southeastern corner to approximately 600 feet above msl in the northwest where the Salinas River exits the Subbasin. The central part of the Subbasin forms a broad plain with relatively minor relief.

Figure 4-1. Paso Robles Subbasin Topography

Figure 4-1 shows the topography of the Subbasin using 100-foot contour intervals. The Subbasin is bounded by sediments with low permeability, sediments with poor groundwater quality, rock, and structural faults. In some areas the sediments of the Subbasin are continuous with adjacent subbasins. Specific Subbasin lateral boundaries include the following:

- The western boundary of the Subbasin is defined by the contact between the sediments in the Subbasin and the sediments of the Santa Lucia Range. An additional section of the western boundary is defined by the San Marcos-Rinconada fault system which separates the Paso Robles Subbasin from the Atascadero Subbasin.
- The northern boundary of the Subbasin is defined by the county line between San Luis Obispo County and Monterey County. This boundary is not defined by a physical barrier to groundwater flow; water-bearing sediments are continuous with the Salinas Valley Upper Valley Subbasin in Monterey County.
- The eastern boundary of the Subbasin is defined by the contact between the sediments in the Subbasin and the sediments of the Temblor Range. The San Andreas Fault forms the northeastern Subbasin boundary and is approximately parallel to the boundary further south.
- The southern boundary of the Subbasin is defined by the contact between the sediments in the Subbasin and the sediments of the La Panza Range. To the southeast, a watershed divide separates the Subbasin from the adjacent Carrizo Plain Basin; sedimentary layers are likely continuous across this divide.

The bottom of the Subbasin is generally defined as the base of the Paso Robles Formation, which is an irregular surface formed as the result of folding, faulting, and erosion (Fugro, 2002). The Subbasin boundary and bottom are not considered absolute barriers to flow because some of the geologic units underlying the Paso Robles Formation produce sufficient quantities of water, but the water is generally of poor quality and it is therefore not considered part of the Subbasin.

Figure 4-2 shows the lateral boundaries of the Subbasin and the approximate depth to the bottom of Paso Robles Formation in areas where it is saturated. The Paso Robles Formation is either not present or not saturated east of the San Juan fault system and there is very little well data in this portion of the subbasin.

Figure 4-2. Base of Subbasin as Defined by the Base of the Paso Robles Formation

4.2 Soils Infiltration Potential

Saturated hydraulic conductivity of surficial soils is a good indicator of the soil's infiltration potential. Soil data from the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO) (USDA NRCS, 2007) is shown by the four hydrologic groups on Figure 4-3. The soil hydrologic group is an assessment of soil infiltration rates that is determined by the water transmitting properties of the soil, which includes hydraulic conductivity and percentage of clays in the soil, relative to sands and gravels. The groups are defined as:

- Group A High Infiltration Rate: water is transmitted freely through the soil; soils typlically less than 10 percent clay and more than 90 percent sand or gravel.
- Group B Moderate Infiltration Rate: water transmission through the soil is unimpeded; soils typically have between 10 and 20 percent clay and 50 to 90 percent sand
- Group C Slow Infiltration Rate: water transmission through the soil is somewhat restricted; soils typically have between 20 and 40 percent clay and less than 50 percent sand
- Group D Very Slow Infiltration Rate: water movement through the soil is restricted or very restricted; soil stypically have greater than 40 percent clay, less than 50 percent sand

The hydrologic group of the soil generally correlates with the hydraulic conductivity of underlying geologic units, with lower soil hydraulic conductivity zones correlating to areas underlain by clayey portions of the Paso Robles Formation. The higher soil hydraulic conductivity zones correspond to areas underlain by alluvium or areas of coarser sediments within the Paso Robles Formation.

Figure 4-3. Paso Robles Subbasin Soil Characteristics

4.3 REGIONAL GEOLOGY

This section provides a description of the geologic formations in the Subbasin. These descriptions are summarized from previously published reports by Fugro (2002 and 2005). Figure 4-4 shows the surficial geology and geologic structures of the Subbasin (County of SLO, 2007). Figure 4-5 provides the location of the geologic cross-sections shown on Figure 4-6 through Figure 4-10. The selected geologic cross-sections illustrate the relationship of the geologic formations that constitute the Subbasin and the geologic formations that underlie and surround the subbasin. The cross-sections are from different reports so the format differs but the units are consistent. Figure 4-6 through Figure 4-8 are from the *Paso Robles Groundwater Basin Study* (Fugro, 2002); Figure 4-9 and Figure 4-10 are from the *Paso Robles Groundwater Basin Study*, *Phase II: Numerical Model Development*, *Calibration, and Application* (Fugro, 2005).

4.3.1 REGIONAL GEOLOGIC STRUCTURES

The base of the Subbasin is locally divided by two semi-parallel bedrock ridges: the San Miguel Dome and the Creston Anticlinorium (Figure 4-4). These two bedrock ridges are often not exposed at the ground surface, but are apparent in the subsurface cross-sections. The subsurface expression of the bedrock is illustrated on the cross-sections shown on Figure 4-6, which shows the Creston Anticlinorium, and Figure 4-8 which shows the San Miguel Dome. Between the San Miguel Dome and Creston Anticlinorium, there is no clear bedrock ridge as shown on Figure 4-7. This gap allows for sediments on the east side of the ridges near Shandon to continue and be connected with sediments on the west side of the ridges.

The deepest portion of the Subbasin is west of the San Miguel Dome and north of Paso Robles, with over 3,000 feet of sediments (Fugro, 2005). This deep trough extends through the Paso Robles area and shallows progressively to the south. As shown on Figure 4-6, the sediments are generally relatively thin on the order of a few hundred feet in the Creston area. East of the San Miguel Dome and near the community of Shandon the Paso Robles Formation is over 2,000 feet thick.

The faults within and along the borders of the Subbasin boundaries are shown on Figure 4-6. The predominant fault near the eastern side of the Subbasin is the San Andreas Fault. The predominant fault near the western side of the Subbasin is the San Marcos-Rinconada fault system. Within the Subbasin and sub-parallel to the San Andreas Fault are the Red Hill, San Juan, and White Canyon faults. It is unknown to what degree these faults are barriers to groundwater flow. In the center of the Subbasin are the King City fault and various unnamed faults. It is unknown to what degree these internal faults are barriers to groundwater flow. These faults could create compartments in the sediments and limit the ability of groundwater to move within the Subbasin.

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

Figure 4-4. Surficial Geology and Geologic Structures

Figure 4-5. Cross Sections Locations

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

Figure 4-8. Geologic Section C-C'

Source: Modified from Fugro (2002)

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

12

Page intentionally left blank

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

Page 40 of 140

4.3.2 GEOLOGIC FORMATIONS WITHIN THE SUBBASIN

The main criteria used by previous authors for defining which geologic formations constitute the groundwater basin are:

- 1. The formation must have sufficient permeability and storage potential for the movement and storage of groundwater such that wells can reliably produce more than 50 gallons per minute (gpm) on a long-term basis, and
- 2. The groundwater produced from the geologic formation must be of generally acceptable quality (Fugro, 2002). DWR (1979) classifies groundwater with a conductivity of 3,000 micromhos/centimeter or less as fresh, and therefore of acceptable quality.

The only two geologic formations that reliably meet these two criteria are the Quaternary-age alluvial deposits and the Tertiary-age Paso Robles Formation. Therefore, these are the only two formations that constitute the Subbasin. A general discussion of these two formations is presented below.

ALLUVIUM

Alluvium occurs beneath the flood plains of the rivers and streams within the Subbasin. Figure 4-4 shows the location of the alluvial deposits, labeled as Quaternary alluvium, identified as Qa. These deposits are typically no more than 100 feet thick and comprise coarse sand and gravel with some fine-grained deposits. The alluvium is generally coarser than the Paso Robles Formation, with higher permeability that results in well production capability that often exceeds 1,000 gpm.

PASO ROBLES FORMATION

The largest volume of sediments in the Subbasin are in the Paso Robles Formation. This formation has sedimentary layers up to 3,000 feet thick in the northern part of the Estrella area and up to 2,000 feet near Shandon. Figure 4-4 shows the location of the Paso Robles Formation deposits, identified as QTp. Throughout most of the Subbasin the Paso Robles Formation sediments have a thickness of 700 to 1,200 feet.

The Paso Robles Formation is derived from erosion of nearby mountain ranges. Sediment size decreases from the east and the west, becoming finer towards the center of the Subbasin, indicating sediment source areas are both to the east and west. The Paso Robles Formation is a Plio-Pleistocene, predominantly non-marine geologic unit comprising relatively thin, often discontinuous sand and gravel layers interbedded with thicker layers of silt and clay. The formation was deposited in alluvial fan, flood plain, and lake depositional environments. The formation is typically unconsolidated and generally poorly sorted. The sand and gravel beds in the Paso Robles Formation have a high percentage of eroded Monterey shale and have lower permeability compared to the overlying alluvial unit. The formation also contains minor amounts of gypsum and woody coal.

Poor quality groundwater with elevated concentrations of iron, manganese, and in some cases hydrogen sulfide odor have been observed within deeper portions of the Paso Robles Formation in some areas.

4.3.3 GEOLOGIC FORMATIONS SURROUNDING THE SUBBASIN

Underlying and surrounding the Subbasin are older geologic formations that either typically have low well yields or have poor quality water. In general, the geologic units underlying the Subbasin include:

- 1. Tertiary-age or older consolidated sedimentary beds;
- 2. Cretaceous-age metamorphic rocks; and

3. Granitic rock.

Figure 4-11 shows the location of oil and gas exploration wells drilled in the Subbasin. These oil and gas wells help identify the depth and extent of the geologic formations that surround and underlie the Subbasin.

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

Figure 4-11. Natural Gas Exploration Well Locations and Geothermal Wells

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

PANCHO RICO FORMATION

The Pancho Rico Formation (Tp) is a Pliocene-age marine deposit found mostly in the northern portion of the study area. In places it appears to be time-correlative to the Paso Robles Formation, and may be in lateral contact as a facies change. The unit predominantly consists of fine-grained sediments up to 1,400 feet thick that yield low quantities of water. The Pancho Rico Formation additionally has poor water quality associated with tar sands that are present at the bottom of this formation (State Division of Mines, 1974).

SANTA MARGARITA FORMATION

The Santa Margarita Formation (Tsm) is an upper Miocene-age marine deposit, consisting of a white, fine-grained sandstone and siltstone with a thickness of up to 1,400 feet. The unit is found beneath most of the Subbasin. The Santa Margarita Formation is relatively permeable, but is not considered part of the Subbasin because the water quality is usually very poor. The geothermal waters contained in the Santa Margarita Formation in this area are often highly mineralized and characterized by elevated boron concentrations that restrict agricultural uses.

MONTEREY FORMATION

The Miocene-age Monterey Formation (Tm) consists of interbedded argillaceous and siliceous shale, sandstone, siltstone, and diatomite. The unit is as great as 2,000 feet thick in the study area, and is often highly deformed. Wells in the Monterey Formation are generally of too low yield to consider the Monterey Formation part of the Subbasin; although isolated areas in the Monterey Formation can yield more than 50 gpm. Additionally, groundwater produced from the Monterey Formation often has high concentrations of hydrogen sulfide, total organic carbon, manganese, and iron.

VAQUEROS FORMATION

The marine Oligocene-age Vaqueros Formation (Tv) is a highly cemented fossiliferous sandstone that reaches a thickness up to 200 feet. Springs in the Vaqueros Formation with flows up to 25 gpm are common in canyons on the western and southern sides of the study area. Most water wells tapping this formation produce less than 20 gpm. Generally, the quality of water in this unit is good, though hard due to the calcareous cement within the rock.

METAMORPHIC AND GRANITIC ROCKS

The southern and western edges of the Subbasin are bordered by Cretaceous-age metamorphic and granitic rock. The metamorphic rock units include the Franciscan, Toro, and Atascadero Formations. The Franciscan consists of discontinuous outcrops of shale, chert, metavolcanics, graywacke, and blue schist, with or without serpentinite. The Toro Formation (Kt) is a highly consolidated claystone and shale that does not typically yield significant water to wells. The Atascadero Formation (Ka) is highly consolidated, but does have some sandstone beds that yield limited amounts of water to wells.

The granitic rock unit (Kgr) lies east of the Rinconada fault system, south of Creston, east of Atascadero, and in the area northwest of the City of Paso Robles. The granitic rocks are often capped by a layer of granular decomposed granite that may be weathered to clay. This decomposed granite may be up to 80 feet in thick and may contain limited amounts of groundwater.

4.4 PRINCIPAL AQUIFERS AND AQUITARDS

Water-bearing sand and gravel beds that may be laterally and vertically discontinuous are generally grouped together into zones that are referred to as aquifers. The aquifers can be vertically separated by fine-grained zones that can impede movement of groundwater between aquifers. Two aquifers exist in the Subbasin:

- A relatively continuous aquifer comprising alluvial sediments that underlie streams;
- An interbedded and discontinuous aquifer comprising sand and gravel lenses in the Paso Robles Formation.

Figure 4-4 shows the location of geologic sections that were used to depict the aquifers in the subsurface. Figure 4-12 through Figure 4-15 show the aquifers and model layers in profile, which are interpreted from the geologic logs, geophysical logs, groundwater levels, and water quality (Fugro, 2002 and 2005). For the GSP several additional well logs were added to the sections to refine the extent of the aquifers. These logs have been labeled with the state well inventory number (e.g. E0188061). Appendix 4A contains the well logs used to update the sections.

Source: Modified from Fugro (2005)

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

	LEGEND	
]	Alluvium	
]	Paso Robles Formation	
]	Pancho Rico Formation	
]	Santa Margarita Formation	^{800'} [
	Monterey Formation	
]	Vaqueros Formation	
]	Quartz Diorite or Granodiorite	
]	Atascadero Formation	0 8000'
	Fault, arrows show relative movement	Vertical Exaggeration = 10x
7	Water level with date noted	
	Base of permeable sediments	CROSS-SECTION C-C
	Model layer boundary	
	Model layer number	
	Well	
]	Basin included in numerical model	
	Area not included in numerical model	
Ľ	Sand and gravel zones of Paso Robles Formation Aqu	ifer

Page 47 of 140

4.4.1 ALLUVIAL AQUIFER

The unconfined Alluvial Aquifer is generally composed of saturated coarse-grained sediments and occurs along Huer Huero Creek, the Salinas River, and the Estrella River; the extent of this aquifer is shown on Figure 4-4. The alluvial aquifer varies in thickness, but is generally about 100 feet thick. The Alluvial Aquifer is highly permeable. Wells screened in the alluvial aquifer can yield up to a 1,000 gpm (Fugro, 2005).

4.4.2 PASO ROBLES FORMATION AQUIFER

Geologic information reported in Fugro (2002) suggests that the sand and gravel zones that constitute the Paso Robles Formation Aquifer are generally thin, discontinuous, and are usually separated vertically by relatively thick zones of silts and clays. Figure 4-4 shows the extent of the Paso Robles Formation in the Subbasin. In general, the sand and gravel zones occur throughout the Paso Robles Formation, although they may be locally discontinuous or absent in some areas. As shown on Figure 4-14, near Creston the shallow sand and gravel zones appear to be disconnected from other parts of the Paso Robles aquifer by faults and structural folds. The shallow aquifer zone near Creston may be an isolated aquifer area.

4.4.3 AQUIFER PROPERTIES

Data reported in Fugro (2002) were reviewed to estimate representative aquifer hydraulic properties. Most aquifer tests have been conducted in the Estrella and Creston areas. Estimated aquifer properties are summarized in Table 4-1.

Well Location	Test Duration (hours)	Flow (gpm)	Well Depth (feet)	Perforated Interval	Transmissivity (gpd/ft)	Q/s (gpm/ft)	Hydraulic Conductivity (ft/day)			
Alluvial Aquifer										
28S/13E-36	24	367	70	40	186,300	68	620			
	Paso Robles Formation Aquifer									
27S/12E-09	72	300	450	170	8,800	4.9	6.9			
26S/12E-22	12	220	430	100	900	1.2	1.2			
25S/11E-24	12	150	350	90	800	0.62	1.2			
27S/12E-18	8	140	225	35	4,100	3	15.7			
26S/12E-20	48	115	400	50	7,600	10	20			
26S/12E-36	24	400	660	280	8,800	5.1	4.2			
26S/12E-35	18	690	830	370	7,900	4.9	2.9			
27S/14E-18	24	600	740	220	6,100	5.5	3.7			
26S/13E-16	24	200	820	350	3,100	2.63	1.2			
26S/12E-25	24	500	730	340	5,700	3.6	2.2			
25S/13E-30	24	600	720	260	6,900	79	3.5			
26S/13E-7	24	600	825	380	3,200	3	1.1			
26S/13E-7	24	600	990	610	5,000	4.2	1.1			
24S/11E-34	24	850	612	100	2,805	4.5	3.8			

 Table 4-1. Paso Robles Subbasin Aquifer Hydrogeologic Properties

Source: Fugro, 2002

Based on limited aquifer property data available for the Alluvial Aquifer, the transmissivity may be in the range of 150,000 to 200,000 gallons per day per foot (gpd/ft); or between 20,000 and 27,000 square feet per day (ft²/day). Hydraulic conductivity of the Alluvial Aquifer may be over 500 feet per day (ft/d).

The estimated transmissivity of the Paso Robles Formation Aquifer ranges between 800 gpd/ft and about 9,000 gpd/ft; or between 100 and 1,200 ft²/day. The geometric mean of the tabulated transmissivity values for the shallow aquifer zone is about 3,500 gpd/ft, or 470 ft²/day.

The estimated hydraulic conductivity of the Paso Robles Formation Aquifer ranges from about 1 ft/d to about 20 ft/d. The geometric mean of the tabulated hydraulic conductivity values for the Paso Robles Formation Aquifer is 5 ft/d.

Limited data exist to assess the confined storage properties, such as storativity, of the Paso Robles Formation aquifer (Fugro, 2002). Table 4-2 summarizes reported estimates of specific yield for unconfined portions of the aquifers. Average specific yield was estimated by analyzing 10 to 20 of the deepest well completion logs for each area. Each lithologic interval was assigned a specific yield by comparison of the formation description with published estimates based on extensive field and laboratory investigations conducted in southern coastal basins by the DWR and modified for the Paso Robles Formation (DWR, 1958). The assigned specific yield was then weighted according to the thickness of each bed and averaged over the entire depth of the well (Fugro, 2002). Results of this analysis suggested that a representative average value for specific yield for the Paso Robles Formation in the Subbasin was 0.09. This specific yield may be low. Average specific yields for unconsolidated sand and gravel sedimentary aquifers are commonly between 0.1 and 0.3 (Driscoll, 1986).

Area	Number	Average	
	of Wells	Estimated	
	Used to	Specific	
	Calculate	Yield	
Creston Area	47	0.09	
Estrella	20	Not	
		provided	
San Juan	5	0.10	
Shandon	20	0.08	
North and South Gabilan	20	0.09	
Basin Wide Average		0.09	

Table 4-2. Paso Robles Subbasin Specific Yield Estimates

Estimates of vertical hydraulic conductivity for each of the aquifers were not in reports from previous studies for the Subbasin. Estimates of vertical hydraulic conductivity incorporated into the basin-wide groundwater model are discussed in an appendix to Chapter 6.

4.4.4 CONFINING BEDS AND GEOLOGIC STRUCTURES

There is limited information regarding the continuity of stratigraphic features in the Subbasin that restrict groundwater flow within the Subbasin. Conceptually, the presence of laterally continuous zones of fine-grained strata within the Paso Robles Formation can restrict vertical movement of groundwater. These fine-grained zones are generally shown on the sections on Figure 4-12 through Figure 4-15. These figures show that the fine-grained strata are likely more continuous than the sand and gravel layers. These fine-grained zones act as confining beds, and are the cause of the artesian wells that were historically reported in the Subbasin. Fine-grained layers that limit vertical movement of groundwater appear to be more prevalent in the Estrella and Creston areas than in the eastern portion of the Shandon area. This may indicate that infiltration and recharge is more limited to the west.

There is some anecdotal evidence that subsurface geologic structures such as folds and faults may affect groundwater flow in the Subbasin. Additional investigations would be needed to characterize the effect of structures on groundwater flow.

4.5 PRIMARY USERS OF GROUNDWATER

The primary groundwater users in the Subbasin include municipal, agricultural, rural residential, small community water systems, and small commercial entities. Municipal, domestic, and agricultural demands in the Subbasin currently rely almost entirely on groundwater. The municipal sector pumps primarily from the Paso Robles Aquifer. The agriculture sector uses groundwater from the Alluvial Aquifer and the Paso Robles Aquifer.

4.6 GENERAL WATER QUALITY

This section presents a general discussion of the natural groundwater quality in the Subbasin, focusing on general minerals. The general water quality of the Subbasin described in this section is a summary of results in the Fugro 2002 report. A more complete discussion of the distribution and concentrations of specific constituents is presented in Chapter 5: Current Conditions.

Groundwater in the Subbasin is generally suitable for drinking and agricultural uses. The two main water types found in the Subbasin are calcium bicarbonate and sodium bicarbonate. Calcium-bicarbonate type is the most prominent and is found in the Creston and San Juan areas. Sodium-bicarbonate is the second most dominant water type and is found in the Estrella and Shandon areas. Minor areas of sodium-chloride type water can be found in the eastern portion of the Subbasin and near Cholame Valley. In the northwest portion of the Subbasin, magnesium bicarbonate waters are found in the San Miguel area and a mixed water type is seen in the Bradley area. A summary of general water quality as indicated by average total dissolved solids (TDS), chloride (Cl), and nitrate (NO3) concentrations in groundwater is provided in Table 4-4 (Fugro 2002).

Area	TDS (ppm)			Cl (ppm)			NO3 (ppm)		
	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max
Creston	490	190	1620	112	25	508	16	2	41
San Juan	753	160	2170	162	13	699	18	ND^1	56
Shandon	606	270	1610	110	31	451	13	5.6	35
Estrella	624	350	1270	126	32	572	9	ND	30
Bradley	897	400	1280	131	40	400	14	ND	55
Gabilan	745	370	1320	87	38	209	39	11	71

Table 4-3. Summary of General Water Quality by Area

¹ND = Non-detect. For the purpose of computing an average, half the detection limit was used.

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

4.7 GROUNDWATER RECHARGE AND DISCHARGE AREAS

Areas of significant, natural, areal recharge and discharge within the Paso Robles Subbasin are discussed below. Quantitative information about all natural and anthropogenic recharge and discharge is provided in Chapter 6: Water Budgets.

4.7.1 GROUNDWATER RECHARGE AREAS INSIDE THE SUBBASIN

In general, natural areal recharge occurs via the following processes:

- 1. Distributed areal infiltration of precipitation, and
- 2. Infiltration of surface water from streams and creeks.

Figure 4-16 is a map that ranks soil suitability to accommodate groundwater recharge based on five major factors that affect recharge potential, including: deep percolation, root zone residence time, topography, chemical limitations, and soil surface condition. The map¹ was developed by the California Soil Resource Lab at UC Davis and the University of California Agricultural and Natural Resources Department.

Areas with excellent recharge properties are shown in green. Areas with poor recharge properties are shown in red. Not all land is classified, but this map provides good guidance on where natural recharge likely occurs.

¹ Figure 4-16 shows the Soil Agricultural Groundwater Banking Index (SAGBI) map for the Paso Robles Subbasin. While the UC Davis database title SAGBI includes the term "banking", its use in this section is strictly as a dataset for evaluating recharge potential in the basin.

Figure 4-16. Potential Recharge Areas

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

30

4.7.2 GROUNDWATER DISCHARGE AREAS INSIDE THE SUBBASIN

Natural groundwater discharge areas within the Plan area include springs and seeps, groundwater discharge to surface water bodies, and evapotranspiration (ET) by phreatophytes. Springs and seeps identified in the National Hydrology Dataset (NHD), and shown on Figure 4-17, tend to be located in the foothills of the Santa Lucia and Temblor mountain ranges. Based on the elevation of mapped springs and seeps, it is likely that these discharge groundwater from shallow, and possibly perched aquifer units. Groundwater discharge to streams – primarily, the Salinas River and Estrella River – has not been mapped to date. Instead, areas of potential groundwater discharge to streams are identified using the groundwater flow model. Orange areas on Figure 4-17 represent streams in the model where simulated average groundwater discharge to the stream reach is at least 10 acre-feet per year. In contrast to mapped springs and seeps, which are derived from the Alluvium.

Figure 4-18 shows the distribution of potential groundwater-dependent ecosystems (GDEs) and Natural Communities Commonly Associated with Groundwater (NCCAG) within the Plan area. In areas where the water table is sufficiently high, groundwater discharge may occur as ET from phreatophyte vegetation within these GDEs. Appendix 4B describes methods used to determine the extent and type of potential GDEs. Figure 4-18 shows only potential GDEs. There has been no verification that the locations shown on this map constitute groundwater dependent ecosystems. Additional field reconnaissance is necessary to verify the existence of these potential GDEs.

Figure 4-17. Potential Groundwater Discharge Areas

DRAFT Paso Robles	Subbasin	Groundwater	Sustainability	Plan
October 10, 2018				

32

Figure 4-18. Potential Groundwater- Dependent Ecosystems

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018 October 17, 2018 Ager

4.8 SURFACE WATER BODIES

Figure 4-19 shows the rivers in the Subbasin that are considered significant to the management of groundwater in the Subbasin. Significant streams in the Subbasin include the Salinas River, the Estrella River, Huer Huero Creek, San Juan Creek, Dry Creek, and Shedd Canyon. These rivers and creeks are ephemeral, and during most of the year the streams lose water to the shallow aquifers. A complete description and quantification of the stream/aquifer interaction is included in Chapters 5 and 6. There are no natural lakes in the Subbasin.

There are no reservoirs within the Subbasin; however, there are two reservoirs in the watershed. The Salinas Dam south of the Subbasin on the Salinas River forms Santa Margarita Lake. The Salinas Dam was constructed in the early 1940s as an emergency measure to provide adequate water supplies for Camp San Luis Obispo. The United States Army Corps of Engineers (USACE) now has jurisdiction over the dam and reservoir facilities. The City of San Luis Obispo has an agreement with USACE to divert the entire yield of Santa Margarita Reservoir for water supply. Nacimiento Reservoir lies just outside of the Subbasin to the northwest. The reservoir discharges to the Nacimiento River, which crosses the northwest corner of the Subbasin.

Figure 4-19. Surface Water Bodies

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

35

4.9 DATA GAPS IN THE HYDROGEOLOGIC CONCEPTUAL MODEL

All hydrologic conceptual models contain a certain amount of uncertainty, and can be improved with additional data and analysis. The hydrogeologic conceptual model of the Paso Robles Subbasin could be improved with certain additional data and analyses. Several data gaps are identified below.

AQUIFER CONTINUITY

Aquifer continuity has a significant impact on how projects and management actions in one part of the Subbasin may influence sustainability in other parts of the Subbasin. As noted earlier, the Paso Robles aquifer comprises many discontinuous sand and gravel beds. However, Figure 4-12 shows a previous interpretation of a deep sand and gravel zone that is relatively continuous across the Subbasin. The continuity of this zone may prove to be important in how effective various projects and programs may promote sustainability. The extent and continuity of the Paso Robles Aquifer should be confirmed through existing or new well logs or other methods such as aerial geophysics. This is particularly important in the areas around Shandon and San Juan.

FAULT INFLUENCE ON GROUNDWATER FLOW

Southeast of the City of Paso Robles is an interbasin fault. It is unknown whether this fault and others are barriers to groundwater flow. If these interbasin faults are barriers to groundwater flow, they could compartmentalize the Subbasin and have a significant impact on where projects must be located in order to achieve sustainability. It may be possible to get a better understanding of the influence of these faults by performing aquifer tests and geophysical surveys in the vicinity of these faults.

VERTICAL GROUNDWATER GRADIENTS

There are no nested wells to demonstrate vertical hydraulic gradients. Demonstrating vertical gradients could be important to assess vertical flows between the Alluvium and the Paso Robles Aquifer as well as vertical flows within the Paso Robles Aquifer.

DRAFT

Chapter 5

Paso Robles Subbasin Groundwater Sustainability Plan

Published on:	October 11, 2018
Received by the Paso Basin Cooperative Committee:	October 17, 2018
Posted on PasoGCP.com:	October 24, 2018
Close of 45-day public comment period:	*December 10, 2018
*pending recommendation by the Cooperative Committee at the	
October 17, 2018 Regular Meeting	

This Draft document is posted on pasogcp.com and is being distributed to the five Paso Robles Subbasin Groundwater Sustainability Agencies (GSAs) to receive and file. Comments from the public are being collected using a comment form available at <u>www.pasogcp.com</u>. If you require a paper form to submit by postal mail, please contact your local Groundwater Sustainability Agency (GSA).

- County of San Luis Obispo
- <u>Shandon-San Juan Water District</u>
- Heritage Ranch CSD
- San Miguel CSD
- <u>City of Paso Robles</u>

Pending the Cooperative Committee's recommendation on October 17, 2018, the Draft GSP Chapter 5 will be distributed to the five Paso Robles Subbasin GSAs to receive and file.

Draft Paso Robles Subbasin Groundwater Sustainability Plan Chapter 5

Prepared for the Paso Robles Subbasin Cooperative Committee and the Groundwater Sustainability Agencies

October 10, 2018

This page intentionally left blank

TABLE OF CONTENTS

CHAPTER 5. Groundwater Conditions	5-1
5.1 Groundwater Elevations	5-1
5.1.1 Alluvial Aquifer	5-2
5.1.2 Paso Robles Formation Aquifer	5-6
5.1.3 Vertical Groundwater Gradients	5-21
5.2 Change in Groundwater Storage	5-23
5.2.1 Alluvial Aquifer	5-23
5.2.2 Paso Robles Formation Aquifer	5-25
5.3 Seawater Intrusion	5-27
5.4 Subsidence	5-27
5.5 Interconnected Surface Water	5-27
5.5.1 Depletion of interconnected surface water	5-30
5.6 Groundwater Quality Distribution and Trends	5-32
5.6.1 Groundwater Quality Suitability for Drinking Water	5-32
5.6.2 Groundwater Quality Suitability for Agricultural Irrigation	5-32
5.6.3 Distribution and Concentrations of Point Sources of	
Groundwater Constituents	5-33
5.6.4 Distribution and Concentrations of Diffuse or Natural Groundwater	
Constituents	5-35
5.6.5 Groundwater Quality Surrounding the Paso Robles Subbasin	5-43

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

LIST OF FIGURES

Figure 5-1.	Location of Wells used for the Groundwater Elevation Assessments	5-3
Figure 5-2.	Groundwater Elevation Contours for the Alluvial Aquifer	5-5
Figure 5-3.	Spring 1997 Paso Robles Formation Aquifer Groundwater	
	Elevation Contours	5-8
Figure 5-4.	Fall 1997 Paso Robles Formation Aquifer Groundwater Elevation Contours	5-9
Figure 5-5.	Paso Robles Formation Aquifer Spring 2017 Groundwater	
	Elevation Contours	.5-11
Figure 5-6.	Paso Robles Formation Aquifer Fall 2017 Groundwater Elevation Contours	. 5-12
Figure 5-7.	Paso Robles Formation Aquifer Change in Groundwater	
	Elevation – Spring 1997 to Spring 2017	. 5-14
Figure 5-8.	Paso Robles Formation Aquifer Change in Groundwater	
	Elevation – Fall 1997 to Fall 2017	. 5-15
Figure 5-9.	Groundwater Elevation at Paso Robles Formation Aquifer	
	Well 25S/12E-26L01	. 5-17
Figure 5-10	. Groundwater Elevation at Paso Robles Formation Aquifer	
	Well 26S/15E-20B02	. 5-18
Figure 5-11	. Groundwater Elevation at Paso Robles Formation Aquifer	
	Well 27S/13E-28F01	. 5-19
Figure 5-12	. Climatic Periods in the Paso Robles Subbasin	. 5-20
Figure 5-13	. Vertical Groundwater Gradients near San Miguel	. 5-22
Figure 5-14	. Estimated Cumulative Change in Groundwater Storage in	
	Alluvial Aquifer	. 5-24
Figure 5-15	. Estimated Cumulative Change in Groundwater Storage in Paso Robles	
	Formation Aquifer	. 5-26
Figure 5-16	. Interconnected and Non-Interconnected Surface Waters	. 5-28
Figure 5-17	. Locations of Interconnected Surface Waters	. 5-29
Figure 5-18	. Estimated Annual Depletion of Interconnected Surface Water	. 5-31
Figure 5-19	. Location of Potential Point Sources of Groundwater Contaminants	. 5-34
Figure 5-20	. TDS Regional Distribution and Trends	. 5-36
Figure 5-21	. Chloride Regional Distribution and Trends	. 5-38
Figure 5-22	. Nitrate Regional Distribution and Trends	. 5-41

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

LIST OF TABLES

Table 5-1.	Potential Point Sources of Groundwater Contamination	5-33
Table 5-2.	TDS Concentration Ranges and Averages	5-35
Table 5-3.	Chloride Concentration Ranges and Averages	5-37
Table 5-4.	Sulfate Concentration Ranges and Averages	5-39
Table 5-5.	Nitrate Concentration Ranges and Averages	5-40
Table 5-6.	Boron Concentration Ranges and Averages	5-42
Table 5-7.	Gross Alpha Concentration Ranges and Averages	5-43

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 2018

CHAPTER 5. GROUNDWATER CONDITIONS

This chapter describes the current and historical groundwater conditions in the Alluvial Aquifer and the Paso Robles Formation Aquifer in the Paso Robles Subbasin. In accordance with the SGMA emergency regulations §354.16, current conditions are any conditions occurring after January 1, 2015. By implication, historical conditions are any conditions occurring prior to January 1, 2015. The chapter focuses on information required by the GSP regulations and information that is important for developing an effective plan to achieve sustainability. The organization of Chapter 5 aligns with the five sustainability indicators applicable to the Subbasin including:

- 1. Chronic lowering of groundwater elevations,
- 2. Changes in groundwater storage,
- 3. Seawater intrusion,
- 4. Subsidence,
- 5. Depletion of interconnected surface waters, and
- 6. Groundwater quality.

5.1 GROUNDWATER ELEVATIONS

The following assessment of groundwater elevation conditions is largely based on data from the San Luis Obispo County Flood Control and Water Conservation District's (SLOFCWCD) groundwater monitoring program. Groundwater levels are measured by the SLOFCWCD through a network of public and private wells in the Subbasin. Additional groundwater elevation data for wells were obtained from other available data sources, including the California Statewide Groundwater Elevation Monitoring (CASGEM) database, USGS, and other regulatory compliance programs. Locations of the wells (about 50 to 55 depending on year) used for the groundwater elevation assessment are shown on Figure 5-1. Data from some of the wells on this figure were collected under confidentiality agreements. To remain consistent with these confidentiality agreements, the well owner information and specific locations for these wells are not provided in this GSP.

The set of wells shown on Figure 5-1 were selected from a larger set of monitor wells in the SLOCFCWCD database based on the following criteria:

- The wells have groundwater elevation data for 1997 and/or 2017;
- Sufficient information exists to assign the well to either the Alluvial Aquifer or Paso Robles Formation Aquifer; and
- Groundwater elevation data were deemed representative of static conditions based on a check of consistency with nearby wells.

Additional information on the monitoring network is provided in Chapter 8 – Monitoring Networks.

Based on available data, the following information is presented in subsequent subsections for both aquifers in the Subbasin.

- Groundwater elevation contour maps for the seasonal high and low periods for 1997 and 2017
- A map depicting the change in groundwater elevation between 1997 and 2017
- Hydrographs for wells with publicly available data
- Assessments of horizontal and vertical groundwater gradients

5.1.1 ALLUVIAL AQUIFER

Groundwater elevation data for the Alluvial Aquifer are limited. The locations of the Alluvial Aquifer monitor wells with available groundwater elevation data are shown on Figure 5-1.

Figure 5-1. Location of Wells used for the Groundwater Elevation Assessments

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10.02018

5.1.1.1 Alluvial Aquifer Groundwater Elevation Contours and Horizontal groundwater gradients

Groundwater elevation data for the Alluvial Aquifer are too limited to prepare representative contour maps for the seasonal high and seasonal low groundwater elevations, or to prepare maps for historical groundwater elevations. Figure 5-2 shows current groundwater elevation contours for the Alluvial Aquifer. The contours were developed using 2017 data when available and the most recent data prior to 2017. Contours are only depicted on the map in areas near the wells that are shown on Figure 5-1.

Groundwater elevations range from approximately 1,400 feet above mean sea level (ft msl) in the southeastern portion of the Subbasin to approximately 600 ft msl near San Miguel. Groundwater flow in the Alluvial Aquifer generally follows the alignment of the creeks and rivers. Overall, groundwater in the Alluvial Aquifer flows from southeast to northwest across the Subbasin. Groundwater elevation data in the Alluvial Aquifer are too sparse to develop meaningful estimates of local horizontal groundwater gradients. On a basin-wide scale, the average horizontal hydraulic gradient in the alluvium is about 0.004 from the southeastern portion of the Subbasin to San Miguel.

5.1.1.1 ALLUVIAL AQUIFER HYDROGRAPHS

Groundwater level data for all of the Alluvial Aquifer wells shown on Figure 5-1 were collected under confidentiality agreements. Therefore, hydrographs for the Alluvial Aquifer are not included in this GSP. The lack of publicly available groundwater level data for the Alluvial Aquifer is a significant data gap.

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10, 20188

Figure 5-2. Groundwater Elevation Contours for the Alluvial Aquifer

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan Octobes:1072018
5.1.2 PASO ROBLES FORMATION AQUIFER

The locations of the Paso Robles Formation Aquifer monitor wells used to assess the hydrogeologic conditions of the Paso Robles Formation Aquifer are shown on Figure 5-1. Groundwater occurs in the Paso Robles Formation Aquifer under unconfined, semi-confined, and confined conditions.

5.1.2.1 PASO ROBLES AQUIFER GROUNDWATER ELEVATION CONTOURS AND HORIZONTAL GROUNDWATER GRADIENTS

Groundwater elevation data for 1997 and 2017 for the Paso Robles Formation Aquifer were contoured to assess current spatial variations, groundwater flow directions, and horizontal groundwater gradients. Contour maps were prepared for the seasonal high groundwater levels, which is typically in the spring, and the seasonal low groundwater levels, which is typically in the fall. In general, the spring groundwater data are for April and the fall groundwater data are for October. Data from public and private wells were used for contouring; information identifying the owner or detailed location of private wells is not shown on the maps. The contours are based on groundwater elevations measured at the well locations shown on Figure 5-1. Contour maps were generated using a computer-based contouring program and checked for representativeness by a qualified hydrogeologist. Groundwater elevation data deemed unrepresentative of static conditions or obviously erroneous were not used for contouring. Similar to groundwater elevation contour maps prepared for previous studies, close inspection of the maps indicates localized areas where interpolated groundwater elevations are above land surface. This typically occurs near streams and incised drainages where land surface tends to be locally lower than surrounding areas. While it is hydrologically possible that groundwater elevations in the Paso Robles Formation Aquifer are above land surface in some local areas, our assessment is that this is more likely an artifact of the computer contouring of sparse groundwater elevation data.

Figure 5-3 and Figure 5-4 show contours of historical groundwater elevations in the Paso Robles Formation Aquifer for spring 1997 and fall 1997, respectively. Overall, groundwater conditions in the Subbasin in the spring and fall of 1997 are similar. Close inspection of the contour maps indicates that groundwater elevations are generally lower in the fall than spring. Groundwater elevations ranged from about 1,300 ft msl in the southeast portion of the Subbasin to about 550 ft msl near the City of Paso Robles and the town of San Miguel (Figure 5-3 and Figure 5-4). Groundwater flow is generally to the northwest and west over most of the Subbasin, except in the area north of the City of Paso Robles where groundwater flow is to the northeast. In general, groundwater flow in the western portion of the Subbasin tends to converge toward areas of low groundwater elevations. These areas of low ground-

water elevation are caused by pumping in the area between the City of Paso Robles, and the communities of San Miguel and Whitley Gardens.

Horizontal groundwater gradients range from approximately 0.003 foot/foot in the southeast portion of the Subbasin to approximately 0.01 foot/foot in the areas both southeast of the City of Paso Robles and northwest of Whitley Gardens. The steepest horizontal groundwater gradients in the Subbasin are on the margins of the pumping depression in the vicinity of the city of Paso Robles and community of San Miguel.

Figure 5-3. Spring 1997 Paso Robles Formation Aquifer Groundwater Elevation Contours

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan Octoben 10,02018

Figure 5-4. Fall 1997 Paso Robles Formation Aquifer Groundwater Elevation Contours

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10.02018 Figure 5-5 and Figure 5-6 show contours of current groundwater elevations in the Paso Robles Formation Aquifer for spring 2017 and fall 2017, respectively. Overall, groundwater conditions in the Subbasin in the spring and fall of 2017 were similar. Close inspection of the contour maps indicates that groundwater elevations are generally lower in the fall than spring. Groundwater elevations in 2017 are also lower than groundwater elevations in 1997. Groundwater elevations in 2017 ranged from about 1,250 ft msl in the southeast portion of the Subbasin to about 500 ft msl east of the City of Paso Robles (Figure 5-5 and Figure 5-6). Groundwater flow is generally to the northwest and west over most of the Subbasin, except in the area north of the City of Paso Robles where groundwater flow is to the northeast. In general, groundwater flow in the western portion of the Subbasin tends to converge toward areas of low groundwater elevations. These areas of low groundwater elevation are caused by pumping in the area between the City of Paso Robles and the communities of San Miguel and Whitley Gardens. Horizontal groundwater gradients range from approximately 0.002 foot/foot in the southeast portion of the Subbasin to approximately 0.02 foot/foot in the area southeast of the City of Paso Robles. The steepest horizontal groundwater gradients in the Subbasin in 2017 are on the margins of the pumping depression east of the city of Paso Robles and southeast of the community of San Miguel.

Figure 5-5. Paso Robles Formation Aquifer Spring 2017 Groundwater Elevation Contours

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10:02018 5-11

Figure 5-6. Paso Robles Formation Aquifer Fall 2017 Groundwater Elevation Contours

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10,02018 5-12

Figure 5-7 depicts the change in spring groundwater elevations in the Paso Robles Formation Aquifer between 1997 and 2017. Figure 5-8 depicts the change in fall groundwater elevations in the Paso Robles Formation Aquifer between and 1997 and 2017. Groundwater elevations are lower in 2017 than 1997 throughout most of the Subbasin. In general, the pattern of groundwater level decline in the spring and fall are similar, with a more pronounced area of decline extending toward Shandon in the fall. More than 80 feet of decline is observed in places during this period. Areas of largest decline are east of the city of Paso Robles, near Creston, and in the southeastern portion of the basin. Limited data suggest an area of higher groundwater elevations exists in the vicinity of the city of Paso Robles in 2017 compared to 1997. The increase may be related to reductions in groundwater pumping in the area.

The groundwater level contours and groundwater level change maps in this GSP are based on a reasonable and thorough analysis of the currently available data. As discussed in Chapter 8, the monitoring network should be expanded to more completely assess Subbasin conditions and demonstrate compliance with the sustainability goal for the Subbasin. Expanding the monitoring network and acquiring more groundwater elevation data will allow the GSAs to refine and modify this GSP in the future based on a more complete understanding of Subbasin conditions.

Figure 5-7. Paso Robles Formation Aquifer Change in Groundwater Elevation – Spring 1997 to Spring 2017

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10:02018

Figure 5-8. Paso Robles Formation Aquifer Change in Groundwater Elevation – Fall 1997 to Fall 2017

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10,02018

5.1.2.2 PASO ROBLES FORMATION AQUIFER HYDROGRAPHS

Appendix 5A includes hydrographs for wells in the Paso Robles Formation Aquifer that have publicly available data. Only 18 of the monitor wells have groundwater elevation data that were not collected under confidentiality agreements. The lack of publicly available groundwater level data for the Paso Robles Formation Aquifer is a significant data gap.

Figure 5-9 through Figure 5-11 show example hydrographs for wells located in the Estrella, Shandon, and Creston subareas of the Paso Robles Subbasin. Wells with publicly available data do not exist in the San Juan subarea. Long-term groundwater elevation declines are evident on all three hydrographs. The magnitude of measured declines over the period of record is generally more than 50 feet at well 25S/12E-06L01, 26S/15E-20B02, and 27S/13E-28F01.

The hydrographs show periods of climatic variations grouped by the following designations: wet, dry, or average/alternating wet and dry. Precipitation data were reviewed and analyzed to determine the occurrence and duration of wet and dry periods for the Paso Robles Subbasin. Precipitation from the Paso Robles weather station (NOAA station 46730) was used for this analysis because it is representative of conditions in the Subbasin and has the longest period of record of any station in the Subbasin. Figure 5-12 shows total annual precipitation by water year recorded at the Paso Robles station. Mean annual precipitation over the period 1925 to 2017 was 14.6 inches.

Wet and dry periods were determined based on a calculation and review of the Standardized Precipitation Index (SPI), which quantifies deviations from normal precipitation. The SPI was calculated at 1-, 2-, and 5-year time scales using the SPI Generator Tool developed by the National Drought Mitigation Center (NDMC, 2018). The 5-year, or 60-month SPI was selected as representative of multi-year meteorological fluctuations in the basin based on review of the data and computed SPI time series. For a given water year, the 60-month SPI quantifies the wetness or dryness of the preceding 60 months relative to the overall period of record. The annual time-series of the 60-month SPI was reviewed and generalized to determine wet and dry periods from 1930 to 2017 (Figure 5-12). A third category, "Average/ alternating", is included for years during which the preceding 60-month period does not show a strong and persistent deviation from normal precipitation.

Figure 5-9. Groundwater Elevation at Paso Robles Formation Aquifer Well 25S/12E-26L01

5-17

Figure 5-10. Groundwater Elevation at Paso Robles Formation Aquifer Well 26S/15E-20B02

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10:02018 5-18

Figure 5-11. Groundwater Elevation at Paso Robles Formation Aquifer Well 27S/13E-28F01

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10,02018 5-19

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 10:02018 5-20

5.1.3 VERTICAL GROUNDWATER GRADIENTS

Limited data exist to assess vertical groundwater gradients. Previous hydrologic studies of the Subbasin indicate that groundwater elevations are generally higher in the Alluvial Aquifer than the underlying Paso Robles Formation Aquifer, resulting in groundwater flow from the Alluvial Aquifer to the underlying Paso Robles Formation aquifer (Fugro, 2005). The *Paso Robles Groundwater Basin Study, Phase II* (Fugro, 2005) stated that there is an assumed upward vertical groundwater gradient near the northern portion of the Subbasin, although data were not provided to verify this assumption.

Vertical groundwater gradients can be estimated from nested or clustered wells. Wells 25S/12E-16K04, K05, and K06 are nested and provide groundwater elevation data from different depths in the Paso Robles Formation Aquifer near San Miguel. These wells are adjacent to a water supply well and therefore the vertical groundwater gradients may reflect local pumping conditions rather than broad, regional conditions. Hydrographs for these wells are shown on Figure 5-13. On this figure, groundwater levels in the shallowest well are shown with a green line, groundwater levels in the middle depth well are shown with a yellow line, and groundwater levels in the deepest well are shown with a red line. Prior to 2002, groundwater levels in the deepest well (red line) were generally higher than the groundwater gradient. A consistent vertical groundwater gradient is not apparent between the shallow and middle wells prior to 2002; groundwater elevations in the shallow and middle depth wells fluctuate around each other. After 2012, groundwater elevations in the shallow and middle depth wells; indicating a downward vertical groundwater gradient.

25S12E-16KO(4-6) Nested Well Hydrograph

5.2 CHANGE IN GROUNDWATER STORAGE

This section summarizes changes in groundwater storage in the Subbasin within the GSP area. Change in groundwater storage was estimated for water years 1981 through 2016 using the updated Paso Robles Subbasin groundwater model.

5.2.1 ALLUVIAL AQUIFER

Figure 5-14 shows the cumulative change in groundwater storage for water years 1981 through 2016 for the Alluvial Aquifer. The period from 1981 through 2011 is considered representative on long-term hydrologic conditions prior to the drought period of 2012 through 2016. The graph also shows the estimated annual groundwater pumping derived from the updated groundwater model and wet, dry, and average/alternating climatic periods based on the analysis presented in Section 5.1.2.2.

Over the period 1981 through 2011, the model indicates no net change in storage occurred in the Alluvial Aquifer. This projection is consistent with the observed stable groundwater elevations in hydrographs for wells screened in the Alluvial Aquifer. During the drought period 2012 through 2016, the model suggests a loss of groundwater in storage in the Alluvial Aquifer of about 50,000 acre-feet (AF).

As indicated on, a decrease in groundwater storage generally occurs during dry periods and an increase in groundwater storage generally occurs during wet periods. During the period 1981 through 2011, estimated groundwater pumping from the Alluvial Aquifer decreased from about 6,000 acre-feet per year (AFY) to about 2,000 AFY as indicated by the black bars on Figure 5-14. This suggests that the loss in groundwater storage is not due to increased pumping, but is more likely a result of lack of recharge during low precipitation years. A secondary cause for the storage loss might be increased downward flow from the Alluvial Aquifer into the Paso Robles Aquifer during this period, although this is difficult to definitively assess from the data.

Figure 5-14. Estimated Cumulative Change in Groundwater Storage in Alluvial Aquifer

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 1,0:02018 5-24

5.2.2 PASO ROBLES FORMATION AQUIFER

Figure 5-15 shows precipitation data and the cumulative change in groundwater storage for water years 1981 through 2016 for the Paso Robles Formation Aquifer. The graph also shows the annual groundwater pumping and water year type. The climatic variation shown on Figure 5-15 is the same climatic variation developed on Figure 5-12. Over the period 1981 through 2011, approximately 170,000 AF were removed from storage in the Paso Robles Formation Aquifer. Over the period 1981 through 2016, approximately 440,000 AF were removed from storage in the Paso Robles Formation Aquifer. Over the period 1981 through 2016, approximately 440,000 AF were removed from storage in the Paso Robles Formation Aquifer. Depletion of groundwater storage generally occurs during dry periods and increases in groundwater storage generally occurs during the periods, as indicated on Figure 5-15. Groundwater pumping decreased during the period from 1981 to 1999 and generally increased from 1999 to 2016. The loss in groundwater storage appears to be from a combination of increased pumping since 1999 and a number of dry years with limited recharge.

Figure 5-15. Estimated Cumulative Change in Groundwater Storage in Paso Robles Formation Aquifer

5-26

5.3 SEAWATER INTRUSION

Seawater intrusion is not an applicable sustainability indicator for the Subbasin. The Subbasin is not adjacent to the Pacific Ocean, a bay, or inlet.

5.4 SUBSIDENCE

Land subsidence is the lowering of the land surface. While several human-induced and natural causes of subsidence exist, the only process applicable to the GSP is subsidence due to lowered groundwater elevations caused by groundwater pumping.

Direct measurements of subsidence have not been made in the Subbasin using extensometers or repeat benchmark calibration; however, interferometric synthetic aperture radar (InSAR) has been used in the area to remotely map subsidence. This technology uses radar images taken from satellites that are used to create maps of changes in land surface elevation. The studies done in the area show that a localized area three miles northeast of the City of Paso Robles had a downward displacement of 0.6 to 2.1 inches between Spring 1997 and Fall 1997 (Valentine, D. W. et al., 2001).

5.5 INTERCONNECTED SURFACE WATER

Limited and ephemeral surface water flows in the Subbasin over the last 40 years make it difficult to study the interconnectivity of surface water and groundwater and to quantify the degree to which surface water depletion has occurred. The spatial extent of interconnected surface water was evaluated based on results from the basin-wide groundwater flow model of the Paso Robles Subbasin. In accordance with the SGMA emergency regulations §351 (o), "Interconnected surface water refers to surface water that is hydraulically connected at any point by a continuous saturated zone to the underlying aquifer and the overlying surface water is not completely depleted". We estimated which surface water bodies are interconnected by comparing simulated groundwater elevations in the Alluvial Aquifer and Paso Robles Formation Aquifer with the elevation of the stream or river bottom. If model-simulated groundwater elevations in any aquifer were above the bottom of the stream or river for at least half of the time between 2010 and 2016, then the surface water was considered interconnected with the groundwater. This concept is illustrated in Figure 5-16. In this figure, both diagrams A and B represent interconnected surface waters. Diagram C shows non-interconnected surface water.

Figure 5-17 shows the extent of interconnected surface water for Water Years 2010 through 2016 based on this model evaluation.

Figure 5-17. Locations of Interconnected Surface Waters

5.5.1 DEPLETION OF INTERCONNECTED SURFACE WATER

Groundwater withdrawals are balanced by a combination of reductions in groundwater storage and changes in the rate of exchange across hydrologic boundaries. In the case of surface water depletion, this rate change could be due to reductions in rates of groundwater discharge to surface water, and increased rates of surface water percolation to groundwater. These two changes together comprise the amount of surface water depletion.

Depletion of interconnected surface water was estimated by evaluating the change in the modeled stream leakage with and without pumping. A model simulation was run without groundwater pumping and was compared to the existing model with groundwater pumping. The difference in stream depletion between the two models is the depletion caused by the groundwater pumping. The stream depletion differences are only estimated for the interconnected segments identified in Figure 5-17. The methodology for quantifying stream depletion is described in detail by Barlow and Leake (2012).

Figure 5-18 shows the estimated annual depletion of the interconnected surface water along the stream segments shown in Figure 5-17 due to groundwater pumping. During the period Water Years 1991 to 2011, mean annual surface water depletion was about 7,600 AFY. During the period of time representative of current conditions (Water Year 2012 through 2016), mean annual surface water depletion was about 8,500 AFY.

5.6 GROUNDWATER QUALITY DISTRIBUTION AND TRENDS

Groundwater quality samples have been collected and analyzed throughout the Subbasin for various studies and programs. Water quality samples have been collected on a regular basis for compliance with regulatory programs. Additionally, a broad survey of groundwater quality sampling was conducted for the *Paso Robles Groundwater Basin Study, Phase I* (Fugro, 2002), and most recently by the USGS in 2018. Historical groundwater quality data were compiled for use in the Salt and Nutrient Management Plan (SNMP) (RMC, 2015).

5.6.1 GROUNDWATER QUALITY SUITABILITY FOR DRINKING WATER

Groundwater in the basin is generally suitable for drinking water purposes. The *Paso Robles Groundwater Basin Study, Phase I* (Fugro 2002) reviewed water quality data from public supply wells to identify exceedances of drinking water standards. The drinking water standards Maximum Contaminant Levels (MCLs) and Secondary MCLs (SMCLs) are established by Federal and State agencies. MCLs are legally enforceable standards, while SMCLs are guidelines established for nonhazardous aesthetic considerations such as taste, odor, and color. The most common water quality standard exceedance in the Subbasin was exceedance of the SMCL for total dissolved solids, which exceeded the standard in 14 samples from the 74 samples. Nitrate also exceeded the MCL in four samples. One exceedance of mercury was found in the San Miguel area in a 1990 sample.

5.6.2 GROUNDWATER QUALITY SUITABILITY FOR AGRICULTURAL IRRIGATION

Groundwater in the basin is generally suitable for agricultural purposes. Fugro (2002) evaluated the agricultural suitability of groundwater using three metrics:

- 1. Salinity as indicated by electrical conductivity;
- 2. Soil structure as indicated by sodium absorption ratio and electrical conductivity; and
- 3. Presence of toxic salts as indicated by concentrations of sodium, chloride, and boron.

Of the 74 samples evaluated, 37 had no restrictions on irrigation use (Fugro, 2002). This does not imply that half of the groundwater in the basin is unsuitable for irrigation; only that half of the samples had some constituent that may restrict unlimited irrigation use. Most cases of slight to moderate restriction on irrigation use were due to sodium or chloride toxicity. Severe restrictions for 13 samples were generally the result of high sodium, chloride, or boron toxicity.

5.6.3 DISTRIBUTION AND CONCENTRATIONS OF POINT SOURCES OF GROUNDWATER CONSTITUENTS

Potential point sources of groundwater quality degradation were identified using the State Water Resources Control Board (SWRCB) Geotracker website. Waste Discharge permits were also reviewed from on-line regional SWRCB websites. Table 5-1 summarizes information from these websites. Figure 5-19 shows the location of potential groundwater contaminant point sources. Based on available information there are no mapped groundwater contamination plumes at these sites, although investigations are ongoing.

SITE NAME	SITE TYPE	CONSTITUENTS OF CONCERN (COCs)	STATUS
Former Chevron 9-0750	LUST Cleanup Site	petroleum hydrocarbons	Remedial action plan submitted Q2 2018
Kirkpatrick Property (Unocal Portion)	Cleanup Program Site	crude oil	Impacted soil; health risk assessment prepared in 2016
Lucy Brown Road Pipeline Site (Former ConocoPhillips Site #3469)	Cleanup Program Site	crude oil, diesel, gasoline	Initial groundwater monitoring data no significant impacts to groundwater.
Estrella Airfield (Paso Robles Municipal Airport)	Military Cleanup Site	Unknown	Unknown
Camp Roberts Solid Waste Site	Land Disposal Site	metals, cyanide, sulfide, herbicides, volatile organic compounds (VOCs), pesticides, PCBs, phthalate esters, phenols, semi-VOCs	Total dissolved solids (TDS), nitrate and manganese detected in wells at concentrations above regulatory standards.
Camp Roberts South and Closed Landfill	Land Disposal Site	VOCs, chloride, sulfate, nitrate, sodium, manganese, TDS, total organic carbon	Carbon tetrachloride detected at concentrations exceeding MCL.
Paso Robles Solid Waste Site	Land Disposal Site	chloride, total alkalinity, manganese, nitrate, sodium, sulfate, temperature, TDS, VOCs, Pesticides, PCBs, organophosphorus compounds, herbicides, semi-VOCs	COCs not detected in groundwater; sulfate and barium locally elevated; no remedial activities.

Table 5-1. Potential Point Sources of Groundwater Contamination

Figure 5-19. Location of Potential Point Sources of Groundwater Contaminants

DRAFT Paso Robles Subbasin Groundwater Sustainability Plan October 107 2018

5.6.4 DISTRIBUTION AND CONCENTRATIONS OF DIFFUSE OR NATURAL GROUNDWATER CONSTITUENTS

Fugro (2002) identified a number of constituents of concern that are broadly distributed throughout the Subbasin. The SNMP (RMC, 2015) provides additional data on the distribution of certain constituents. This GSP focuses only on constituents that might be impacted by groundwater management activities. The constituents discussed below are chosen because:

- 1. The constituent has either a drinking water standard or a known effect on crops.
- 2. Concentrations have been observed above either the drinking water standard or the level that affects crops.

5.6.4.1 TOTAL DISSOLVED SOLIDS

Total Dissolved Solids (TDS) is a constituent of concern in groundwater because it has been detected at concentrations greater than its SMCL of 500 milligrams per liter (mg/L). Table 5-2 shows the range and average TDS concentrations by subarea as reported in the SNMP (RMC, 2015). This table shows the average TDS concentrations are greater than the SMCL of 500 mg/L in parts of the Subbasin. This table includes data for portions of the Bradley, North Gabilan, and South Gabilan subareas that are outside the GSP area.

	TDS	Average TDS
Hydrogeologic	Concentration	Concentration
Subarea	Range (mg/L)	(mg/L)
Estrella	350 - 1,560	552
Shandon	270 - 3,160	563
Creston	190 – 1,620	388
San Juan	160 – 2,170	425
Bradley	400 - 1,280	751
North Gabilan	370 - 1,320	856
South Gabilan	370 - 1,320	451

	TDOO		D	1 4	
Table 5-2	11)S Conce	ntration	Kanges	and A	verages
1 4010 0 2.	1D0 Conce	mulation	rungeo	und 1	reruges

Source: RMC, 2015

The distribution and trends of TDS in the Subbasin are shown on Figure 5-20. This figure is from the SNMP (RMC, 2015) and includes portions of the Subbasin north of the Monterey County line which are outside the GSP area. The study area for the SNMP also did not extend as far southeast as the GSP area. TDS distribution shown on this figure is not differentiated by aquifer or well depth. Sustainability projects and management actions implemented as part of this GSP are not anticipated to directly cause TDS concentrations in groundwater in a well that would otherwise remain below the SMCL to increase above the SMCL.

Source: RMC, 2015

5.6.4.1 CHLORIDE

Chloride is a constituent of concern in groundwater because it has been detected at concentrations greater than its SMCL of 250 mg/L. Elevated chloride concentrations in groundwater can damage crops and affect plant growth. The *Paso Robles Groundwater Basin Study, Phase I* (Fugro 2002) reported that slight to moderate restrictions on irrigating trees and vines may occur when chloride concentrations exceed 100 mg/L. Severe restrictions on irrigating trees and vines may occur when chloride concentrations exceed 350 mg/L.

Table 5-3, which was compiled based on various tables and related information in the SNMP (RMC, 2015), shows the range and average chloride concentrations by subarea. This table indicates that average chloride concentrations are less than the SMCL of 250 mg/L throughout Subbasin. This table includes data for areas of the Bradley, North Gabilan, and South Gabilan subareas that are outside the GSP area.

		Average
	Chloride	Chloride
Hydrogeologic	Concentration	Concentration
Subarea	Range (mg/L)	(mg/L)
Estrella	32 - 572	94
Shandon	31 - 550	80
Creston	25 - 508	69
San Juan	13 - 699	64
Bradley	40 - 400	84
North Gabilan	35 - 209	113
South Gabilan	35 - 209	37

 Table 5-3.
 Chloride Concentration Ranges and Averages

Source: RMC, 2015

The distribution and trends of chloride in the Subbasin are shown on Figure 5-21. This figure is from the SNMP (RMC, 2015) and includes portions of the Subbasin north of the Monterey County line which are outside the GSP area. Chloride distribution shown on this figure is not differentiated by aquifer or well depth. Sustainability projects and management actions implemented as part of this GSP are not anticipated to directly cause chloride concentrations in groundwater in a well that would otherwise remain below the SMCL to increase above the SMCL.

Source: RMC, 2015

5.6.4.2 SULFATE

Sulfate is a constituent of concern in groundwater because it has been observed at concentrations above its SMCL of 250 mg/L. Table 5-4 shows the range and average sulfate concentrations by subarea as reported in the SNMP (RMC, 2015). This table shows the average sulfate concentrations are greater than the SMCL of 250 mg/L in many areas of the Subbasin. This table includes data for areas of the Bradley, North Gabilan, and South Gabilan subareas that are outside the GSP area.

		Average	
	Sulfate	Sulfate	
Hydrogeologic	Concentration	Concentration	
Subarea	Range (mg/L)	(mg/L)	
Estrella	11 - 375	129	
Shandon	14 – 2,010	360	
Creston	7 - 353	67	
San Juan	24 - 722	248	
Bradley	30 - 704	296	
North Gabilan	9 - 648	194	
South Gabilan	9 - 648	194	

Table 5-4. Sulfate Concentration Ranges and Averages

Source: RMC, 2015

Maps of sulfate distribution in the Subbasin were not found in previous studies. Sustainability projects and management actions implemented as part of this GSP are not anticipated to directly cause sulfate concentrations in groundwater in a well that would otherwise remain below the SMCL to increase above the SMCL.

5.6.4.3 NITRATE

Nitrate is a constituent of concern in groundwater because concentrations have been detected greater than its MCL of 10 mg/L (measured as nitrogen). Nitrate concentrations in excess of the MCLs can result in health impacts.

Table 5-5 shows the range and average nitrate concentrations by subarea as reported in the SNMP (RMC, 2015). This table shows the average nitrate concentrations are less than the MCL of 10 mg/L throughout Subbasin. The range of measured nitrate concentrations however exceeds the MCL of 10 mg/L in every subarea. This table includes data for areas of the Bradley, North Gabilan, and South Gabilan subareas that are outside the GSP area.

		Average
	Nitrate	Nitrate
Hydrogeologic	Concentration	Concentration
Subarea	Range (mg/L)	(mg/L)
Estrella	0 – 16.2	2.5
Shandon	1.2 – 12.1	4.6
Creston	0.8 – 9.2	3.2
San Juan	0.1 - 5.8	2.8
Bradley	0.0 - 5.8	2.7
North Gabilan	5.0 - 9.8	8.4
South Gabilan	15.8	6.3

Table 5-5. Nitrate Concentration Ranges and Averages

Source: RMC, 2015; data are from Table 3-12; the range of nitrate concentration in the South Gabilan subarea is uncertain

The distribution and trends of nitrate in the Subbasin are shown on Figure 5-22. This figure is from the SNMP (RMC, 2015) and includes portions of the Subbasin north of the Monterey County line which are outside the GSP area. This nitrate distribution shown on this figure is not differentiated by aquifer or well depth. Sustainability projects and management actions implemented as part of this GSP are not anticipated to directly cause nitrate concentrations in groundwater in a well that would otherwise remain below the SMCL to increase above the SMCL.

Source: RMC, 2015. Figure 3-10
5.6.4.4 BORON

Boron is an unregulated constituent and therefore does not have a regulatory standard. However, boron is a constituent of concern because elevated boron concentrations in water can damage crops and affect plant growth. The *Paso Robles Groundwater Basin Study, Phase I* (Fugro 2002) reported that severe restrictions on irrigating trees and vines may occur when boron concentrations exceed 0.5 mg/L.

Table 5-6 shows the range and average boron concentrations by subarea as reported in the SNMP (RMC, 2015). Average boron concentration exceeds the severe irrigation restriction level of 0.5 mg/L in the Estrella, Shandon, and San Juan subareas. The table includes data for areas of the Bradley, North Gabilan, and South Gabilan subareas that are outside the GSP area.

		Average
	Boron	Boron
Hydrogeologic	Concentration	Concentration
Subarea	Range (mg/L)	(mg/L)
Estrella	0.13 – 5.66	1.8
Shandon	0.08 – 2.97	0.81
Creston	0.06 – 0.31	0.14
San Juan	0.08 – 2.29	0.74
Bradley	0.12 – 0.18	0.15
North Gabilan	0.11 – 0.44	0.24
South Gabilan	0.11 – 0.44	0.24

Table 5-6. Boron Concentration Ranges and Averages

Source: RMC, 2015

Maps of boron distribution in the Subbasin were not found in previous studies. Sustainability projects and management actions implemented as part of this GSP are not anticipated to directly cause boron concentrations in groundwater in a well that would otherwise remain below the SMCL to increase above the SMCL.

5.6.4.5 GROSS ALPHA RADIATION

Gross alpha radiation is a constituent of concern because it has been detected at concentrations greater than its MCL of 15 picocuries per liter (pCi/L). Fugro (2002) reports that gross alpha radioactivity is present in most areas of the basin. Gross alpha particle count activity in groundwater exceeded the MCL for drinking water in the Estrella and Bradley areas. Gross alpha data included in Fugro's 2002 report are summarized in Table 5-7.

	Gross Alpha	Gross Alpha
	Maximum	Average
Hydrogeologic	Concentration	Concentration
Subarea	(pCi/L)	(pCi/L)
Estrella	31	20
Shandon	3	3
Bradley	23	2

Table 5-7. Gross Alpha Concentration Ranges and Averages

Source: Fugro, 2002

No maps exist of the gross alpha distribution in the Subbasin. Sustainability projects and management actions implemented as part of this GSP are not anticipated to directly cause gross alpha radiation concentrations in groundwater in a well that would otherwise remain below the SMCL to increase above the SMCL.

5.6.5 GROUNDWATER QUALITY SURROUNDING THE PASO ROBLES SUBBASIN

Poor quality groundwater has been documented in wells that screen sediments and rocks below the Paso Formation as well as sediments and rocks surrounding the Subbasin. Based on limited observations, there is a concern that this poor quality groundwater may be drawn into wells in the Subbasin and degrade the groundwater quality if groundwater levels are allowed to fall too low. Groundwater levels must be maintained at elevations that prevent migration of poor quality groundwater from beneath or around the Subbasin.

PASO BASIN COOPERATIVE COMMITTEE October 17, 2018

Agenda Item #7 – Project Status Update

SUBJECT

Receive status update on development of the Paso Basin Groundwater Sustainability Plan

RECOMMENDATION

It is recommended that the Paso Basin Cooperative Committee (Committee) receive an update on development of the Paso Basin Groundwater Sustainability Plan (GSP), including:

- a. Budget
- b. Schedule
- c. Projects and Management Actions

PREPARED BY

Not Applicable – See attached material provided by City of Paso Robles' staff, Dick McKinley, Committee Treasurer, Joe Parent, and the GSP Consultant team.

ATTACHED

- 1. Staff Report: Agenda Item #7a Project Status Update: Budget
- 2. Presentation slides: Agenda Item #7b Schedule
- 3. Presentation slides: Agenda Item #7c Projects and Management Actions

* * *

PASO BASIN COOPERATIVE COMMITTEE October 17, 2018

Agenda Item #7a – Project Status Update: Budget

SUBJECT

Project Status Update: Budget

PREPARED BY

Joe Parent, Cooperative Committee Treasurer Dick McKinley, Public Works Director, City of El Paso de Robles GSA

BACKGROUND

The GSA partners have agreed, through the MOA, to share costs of preparing the GSP. The partners applied for and received a grant from the State to prepare the GSP. The City of Paso Robles is the grant administrator as well as the contract administrator. DWR is currently preparing the Grant Agreement which the City of Paso Robles will execute upon receipt and review.

RESPONSE

To date the City has received five invoices from the consultant team – the most recent late last week. We are very close to receiving the final Grant Agreement. Without a signed Grant Agreement, no funds can be reimbursed from the Grant at this time.

Grant Amount	\$1,500,000
Contract Amount	\$1,363,515
Total Invoiced To Date Amount	\$794,698.34 (58%)
Remaining Contract Amount	\$568,816.66 (42%)

RECOMMENDATION

Receive this information.

* * *

PASO ROBLES SUBBASIN GSP DEVELOPMENT

Paso Robles Basin GSAs

City of Paso Robles County of San Luis Obispo Heritage Ranch CSD San Miguel CSD Shandon-San Juan Water District

October 17, 2018

Project Status Update

Schedule

APR	ΜΑΥ	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN
		201	8											20	19						2020
asin !	Setting	and Gro	undwa	iter Mo	del	,	We	are	e her	re											
		Susta	inable Mo	Manag nitoring	ement g Netw	Criteri ork	a and														
					Proje	ects and	d Manag	jement	Action	s											
									Pre	epare li	mpleme	ntation	Plan								
															Pr	epare C	omplet	e GSP			
			Enana	mont																	
Comm	unicati	on and	engaye	ment																	

SMC Workshops

- 3 Workshops Completed
 - Sept 19, Oct 4, Oct 8
 - 50+ people at each meeting
- Presented water budget review for background; then focused on SMC methodology
- Received public input on management areas and SMC assumptions
 - Currently changing our SMCs based on public input

Tentative GSP Chapter Release & Public Comment Schedule

GSP Chapter	Received by CC	Public Comment Period
 Introduction to Paso Robles Subbasin GSP Agency Information Description of Plan Area *11. Communication & Engagement Plan (C&E)	7/25/18	8/31/18 – 10/15/18
4. Hydrogeologic Conceptual Model (HCM)	Revised 10/17/18	Revised 10/24/18 – 12/10/18
5. Groundwater Conditions	10/17/18	10/24/18 - 12/10/18
6. Water Budget7. Sustainable Management Criteria (SMC)8. Monitoring Network	Anticipated 1/23/19	Anticipated 1/30/19 – 3/18/19
 9. Projects and Management Actions 10. Plan Implementation *11. Notice and Communications 12. Interagency Agreements 13. Reference List 	Anticipated 4/24/19	Anticipated 5/1/19 – 6/18/19

Public Comment Process

Public Comment Form

PasoGCP.com / PasoGSP.com

- Comments submitted to GSAs
 - County of San Luis Obispo
 - Shandon-San Juan Water District
 - Heritage Ranch CSD
 - San Miguel CSD
 - City of Paso Robles

a Ga	nundwater Communication Portal (OCP)
	Garden Communication Porter (CCCP)
	Comment Form
	Comment Form
	Thank you for taking the time to participate and comment on the Paso Nobes Subbash Groundwater Sustainability Plan. Please enter comments by chapter and section.
	• Firel Name
	Clast Name
	AgencylOrganization
	17 applicative
	Address
	None address or property of missed
	• Cay
	Elli Code
	• Enul
	A copy of poly comments will be went to this small address
	· COMMENTS
	(Choose a shapler *
	Choose a section 2
	Attachments + Add Another Commans
	While attachments (e.g., letters) will be read and considered, individual comments entered using the form will receive a response for each comment.
	Choose File No file chosen
	Are required fields Gancel Gancel
	Choose File No File chosen Are required fields Cancel

PASO ROBLES SUBBASIN GSP DEVELOPMENT

Paso Robles Basin GSAs

City of Paso Robles County of San Luis Obispo Heritage Ranch CSD San Miguel CSD Shandon-San Juan Water District

October 17, 2018

Presentation Outline

- Water Rights Review
- Projects & Management Actions Overview
- Potential Management Actions Framework
- Projects
- Next Steps

October 17, 2018

Water Rights Review

Groundwater Rights

- GSAs do not have the authority to determine or alter groundwater rights (Water Code 10720.5(b))"
- GSA authority is to create a GSP that achieves sustainability
 - The authority above DOES include ability to manage extractions, limit pumping, and require fees.
- Goal of the GSP is to achieve sustainability AND comply with the rules of groundwater rights.
- Challenge for the GSP is that there are many groundwater rights holders with valid rights; but these rights have not been quantified

Proposed Framework: Flexibility in Responding to Legal Developments

- Goal: Develop management actions that will remain flexible and able to respond to new information and determinations.
- Steps to achieve goal: Propose management actions and receive feedback regarding stakeholder understanding and support of the proposed actions.

Projects & Management Actions Overview

Paso Robles Projects & Management Actions

Presentation Objectives

- Outline initial concepts for a management actions framework and potential projects.
- Identify key issues requiring further input.
- Propose next steps and timeline.
- Obtain feedback and input from the CC on the management actions framework and potential projects.

Purposes of Projects/Actions Framework

- Develop a funding source for supply augmentation and/or demand reduction projects.
- Manage current pumping to achieve sustainable yield.
- Manage future pumping to prevent undesirable results.
- **Provide flexibility** for pumpers to pursue their preferred demand reduction method and/or augment supplies.
- Strive for equitable solutions that lead to broad stakeholder acceptance.
- Protect the local economy
- Develop a GSP that can withstand legal challenge

Funding for GSA Operations

- Funding for GSA operations was not listed on the previous slide.
 - Operational budget is separate from projects budget.
 - GSAs responsible for operational funding.
 - Detailed in updated MOA.
- GSA operational costs include:
 - Staff and overhead.
 - Measurement/monitoring.
 - Financial and water accounting/reporting.
 - Legal, technical, etc.

Potential Management Actions Framework

Paso Robles Projects & Management Actions

Management Actions Discussion: Purpose

- Provide a high-level framework for managing extractions
 - Many details to be developed
- Outline a system where users of more groundwater pay more
- Accept feedback from the CC on the framework
- Accept feedback from the CC on any details

Management Actions Goal

- Multiple options are available for achieving sustainability:
 - Demand Reduction
 - Agricultural conservation/efficiency.
 - Land use restrictions.
 - Urban conservation.
 - Mandatory pumping restrictions.
 - Supply Augmentation
- Goal: Establish a framework that provides each pumper the flexibility to select their preferred approach(es) from the above "menu" of options.

Potential Water Charges Framework

- Used successfully in other basins.
- **Does not** impose pumping limitations.
- Does:
 - Provide flexibility to achieve sustainability at the lowest cost.
 - Allow pumpers to select their preferred management action, or no action.
 - Avoid shocks.
 - Incentivize conservation and groundwater replenishment.
 - Serve as a continuation of the County's Ag Offset Program.
 - Manage new demand.
 - Provide funding for GSP projects.

Potential Water Charges Framework

- Typical water charges categories:
 - Production Assessment: Fee per acre-foot charged for pumping.
 - Overproduction Surcharge: Additional fee per acre-foot charged for any pumping above the "Production Allowance."
- Revenues used to fund supply augmentation projects.
 - GSA operational costs funded separately.

Production Allowances

- Multiple approaches/options are available.
- Key considerations are equity and consistency with water law.
- Overlying Pumpers: Quantified based on reasonable share of sustainable yield.
 - What is reasonable?
- Other Pumpers: Follow potential prescriptive or appropriative claims.
- De Minimis Pumpers: Exempted?
 - But control growth of rural residential water use?
- Do not limit pumping.

Tools Used in Other Basins

Other basins with similar water charges use several tools to provide flexibility and achieve sustainability:

- Rampdown production allowances to equal sustainable yield.
- Carryover unused production allowance to subsequent years.
- Storage Credits awarded for groundwater recharge.
- Offsets using production allowances. Effectively a continuation of the existing offsets ordinance.
 - Offsets need to be vetted for impacts on the basin and individual landowners
- Overproduction allowed subject to Overproduction Surcharges.

Offsets-Questions to Consider

- Extend and refine existing Offset Ordinance what additional safeguards are needed?
- Limit types of offsets?
- Geographic limitations?
- How to prevent third-party impacts?
- Production allowance accounting?
- How to avoid hoarding production allowances?

Water Charges Framework Review

- Presented a <u>framework</u> for groundwater pumping management. Important aspects of the framework include
 - Establishes a production allowance
 - Does not limit pumping
 - Pumpers exceeding their production allowance pay for new supply projects through the Overproduction Surcharge
 - Provides pumpers the flexibility to reduce pumping, augment their water supplies, or both.

Next Steps and Feedback on the Framework

Issues requiring feedback/input

- Overall framework
- Quantification of production allowances
- Rampdown schedule
- Carryover and storage credits
- Offset parameters
- Structure for management, accounting, and measurement of extractions and offsets

Projects

Paso Robles Subbasin Projects & Management Actions

Projects: Outline of Discussion Today

- Summary of Where We Last Left Off
- Potential New Water Supplies for the Basin
- Types of Projects to Bring in Supplies
- Example Projects and Approximate Costs

Objectives

- Present where we are at in developing potential projects
- Obtain feedback on types of projects to consider in each area
- Receive input on prioritization of projects

Where We Last Left Off....

Potential Supply Projects (all require infrastructure for deliveries or recharge) In Basin Supply Enhancements Greater Basin Supply Enhancements Out of Basin Supplies

After Public Workshop Input In May ...

Screening of Categories

	Investigate Further – Develop Specific Projects	Keep in GSP but don't develop specific projects
Watershed Management/ Recharge	 Flood flow capture/ recharge 	 Restoration and forest management LID/rainwater harvest
New Supply	 Naci Water State Water Recycled Water Salinas Dam 	 Interlake Tunnel

Available Supplies Paired with Estimated Need

Bradley Estrella	South Gabilan Shandon		Recyclec State W Nacimie Rivers/S	l Water 'ater Project (SWP) nto Water Project (NWP) treams
	KIR	Sub	area	1981 to 2016 Average Deficit (AFY)
Cres	ton:	Estr	ella	- 8,400
South Street	San luan	San	Juan	- 4,100
and the		Cre	ston	- 1,900
	Al m	Sha	Indon	- 700
200 000 22	Do a	Bra	dley	- 200
Car in		Nor	rth Gabilan	100
	YESSIA	Sou	th Gabilan	1,500

Types of Projects to Bring In Supplies

- Direct delivery (Offset Pumping)
 - In-lieu recharge
 - Goal is to offset pumping of Paso Robles formation
 - Seasonal need
- Recharge the aquifer
 - Recharge basins (lower efficiency)
 - Direct injection

Recharge Benefit can vary (Direct Inject vs Basins)

Project Cost Components

- Cost of water
- Infrastructure (annualized over 30 years)
- Ongoing O&M (e.g. pumping, maintenance)

=Cost/AF

October 17, 2018

Nacimiento Water Project (NWP)

	Largest Contractors	Allocation (AFY)
	City of Paso Robles	6,488
The second secon	Atascadero Mutual Water Company	3,244
	City of SLO	5,482
The second secon	Past years unus 4,000-8,000 A	ed supply: FY

Nacimiento Water Project (NWP)

- Water Sales Program under development (many GSAs interested in supply)
- Ways to potentially purchase NWP water (Historic ave. \$1,200/AF*)
 - **Turnback Pool:** Use of existing contractor's excess water on a short-term basis of agreement.
 - Multi-year Purchase Agreement: Negotiation of long-term temporary agreement with an existing contractor.
- Key Issues:
 - Water quality need pilot study
 - System reliability: Interruptions weeks to months each year.
 - No storage rights (end of water year lose what's not used).
 - High existing summer demands
- * Not including capital costs, to the extent needed.

NWP – Direct Deliveries in Estrella (Deficit Mitigation Goal = 8,400 AFY)

Salinas and Estrella River Confluence (3,700 AFY) ~\$2,700/AF

East of City (5,600 AFY):

~\$3,200/AF

Notes:

- (1) Costs could decrease through infrastructure optimization
- (2) Costs assume cost of water at \$1200/AF, subject to negotiation
- (3) Costs could increase if treatment is required

NWP Recharge Project in Estrella

Recharge Basin (8,400 AFY): ~\$2,000/AF

* Previous studies showed relatively high efficiency for recharge in this area.

Notes:

 Costs assume cost of water at \$1200/AF, subject to negotiation

State Water Project (SWP)

(60% of 14,400 AFY)	~9,000 AFY
Lever Terre Accesses Accessibility	
Total Unsubscribed	14,400 AFY
Total Subscribed	10,600 AFY
SLO County Table A Allocation	25,000 AFY

Approximate excess allocation (dry to normal yr): 4,000-9,000 AFY

35

SWP – Procurement Options (Cost of Water Only)

- Excess capacity within Coastal Branch appears to exist.
- Procurement Option 1: Become a new SWP subcontractor
 - Would require renegotiation of Master Water Supply Agreement
 - SLOFWCD's contracted capacity within the Coastal Branch is limited to 4,830 AFY
 - Buy in costs and ongoing cost of water is up in the air many state and local variables
 - 2016 Supply Options Study estimated a cost of ~\$2,500/AF for treated water, but this is negotiable.
- Procurement Option 2: Negotiate contract with an existing subcontractor
 - Cost negotiable (~\$1,200/AF historic average cost for subcontractor treated water)
 - Would not require renegatiation of Master Water Supply Agreement

SWP – Direct Deliveries

Shandon Area (700 AFY) ~\$2,400 - 3,700/AF

Creston Area (1,900 AFY) ~\$2,600 - 3,900/AF

Shell Creek (2,500 AFY) ~\$2,900 - 4,200/AF

San Juan Creek (3,000 AFY) ~\$3,900 - 5,200/AF

Notes:

- (1) Costs could decrease through infrastructure optimization
- (2) Costs of water assumed at \$1200 to \$2,500/AF, subject to negotiation

SWP – Recharge Basins

Shandon (1,600 AFY): ~\$1,300 - 2,600/AF

Creston (3,800 AFY): ~\$1,300 - 2,600/AF

Notes:

- (1) Assumes land available near SWP
- (2) Costs of water assumed at \$1200 to \$2,500/AF, subject to negotiation
- Previous studies showed 50% recharge efficiency in the Shandon area, and 30-80% efficiency in Creston.

SWP – Direct Injection

Creston (1,900 AFY) \$1,900 - 3,200/AF

Notes:

- (1) Assumes 100% efficiency
- (2) Costs of water assumed at \$1200 to \$2,500/AF, subject to negotiation

Recycled Water is underway already

Sources:

- Paso Robles WWTP:
 - Phase I: 2,900 AFY (direct delivery + discharge to Huerhuero Creek)
 - Phase I + II: 5,000 AFY (future)
- San Miguel WWTP: 200 to 450 AFY (future) direct delivery
- Both working with local farmers for construction of direct delivery infrastructure

Key Issues:

- Water conservation leads to less supply
- Water quality: salinity concerns

Lake Santa Margarita/Salinas Dam Expansion

- Existing capacity ~4910 afy
- Study in 1990s for expansion of dam by 1760 AF.
- County in process of investigating transfer of ownership, benefits of expansion, and funding options.

Rivers/Streams: flood flow capture

Flood Flow Diversions - Legal

Standard Surface Water Diversion Permit

- Salinas River between Salinas Dam and Nacimiento is fully allocated except for during Jan 1 – May 15.
- Lengthy, complicated process
- All permit applications subject to protest from existing users.

Temporary Flood Flows Permit

- Existing temporary permitting process for flood flows.
- Draft streamlined permitting for local agencies as defined by SGMA that propose diverting flood flows for underground storage
 - Dec 1 March 31; only flows>90th percentile flow; only 10-20% of flow

Salinas Flood Flows – Cost (\$/AF)

- Costs highly dependent on diversion method and distance to recharge area
 - Multiple high capacity wells
 - Ranney collectors
 - Direct diversions into ponds/fields
- Costs could be comparable to other sources of supplemental water, or could be much more expensive.
- Well Cost (800 gpm wells) approx.
 \$2,200/AF
- Well + recharge basin = \$4,600/AF

System Size	Amout Captured in 2017	Average Annual Captured Over 30 Year Period
1,000 CFS	25,000 AF	6,400 AFY
80 CFS (~45 wells at 800 gpm)	4,500 AF	1,250 AFY
40 CFS	2,300 AF	650 AFY
10 CFS (~6 wells)	500 AF	160 AFY

Summary and Feedback of Projects

Presented:

- Potential New Water Supplies for the Basin
- Types of Projects to Bring in Supplies
- Example Projects and Approximate Costs

Feedback to meet our objectives:

- Comments on types of projects?
- Comments on projects in each subarea?
- Input on prioritization of projects in each subarea?

Next Steps and Feedback

Next Steps for Management Actions and Projects

- Small group presentations (Oct and Nov)
 - Solicit input on water allocation system and potential projects
- Refine actions and projects (Dec/Jan)
 - Based on input today
 - Based on input from small group meetings
 - Update for projected demands with climate change
- Update to Cooperative Committee (Jan 2019)
- Develop chapter for GSP (Feb/March 2019)
- Present chapter to CC (April 2019)

Questions