

# SAN LUIS OBISPO COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

# Technical Memorandum (TM) - 21 System Expansion and Modifications Conceptual Details and Requirements



March 2011



B&V Project No. 149789

B&V Project 149789 B&V File No. G.2.21 March 2011

#### TABLE OF CONTENTS

#### **EXECUTIVE SUMMARY**

#### **1.0 INTRODUCTION**

- 1.1 Purpose of Technical Memorandum
- 1.2 List of Terms, Acronyms, and Abbreviations

#### 2.0 DETAILS OF EXISTING PIPELINES

- 2.1 Overview
- 2.2 Existing Pipelines and Facilities
- 2.3 Pipeline Route, System Schematic and HGL
- 2.4 Existing Pipeline Appurtenances

#### 3.0 EXPANSION/MODIFICATION TECHNIQUES

- 3.1 Overview
- 3.2 Hot Tapping
- 3.3 Tapping Sleeves
- 3.4 Cut-in Tee
- 3.5 Use of Existing Pumpouts
- 3.6 Use of Existing Air Valve Connection
- 3.7 Use of Existing Blind Flanges
- 3.8 Relative Advantages and Disadvantages of Techniques
- 3.9 Selection Criteria for Turnout Connections
- 3.10 Selection Criteria for Flowmeters
- 3.11 Selection Criteria for Control Valves
- 3.12 Recommended Alternatives and Configurations

#### 4.0 CORROSION MONITORING

- 4.1 Overview
- 4.2 Existing Pipeline Corrosion Monitoring Methods
- 4.3 Suggested Corrosion Monitoring Methods for New Pipelines

#### 5.0 **PROTECTION OF CEMENT MORTAR LINING**

- 5.1 Overview
- 5.2 Existing Cement Mortar Lining
- 5.3 Suggested Cement Mortar Lining Protection Methods

#### 6.0 SURGE PROTECTION AND MONITORING

- 6.1 Overview
- 6.2 Existing Surge Control and Monitoring Measures
- 6.3 Suggested Surge Control and Monitoring Measures



B&V Project 149789 B&V File No. G.2.21 March 2011

#### List of Tables

Table ES-1: Details of Existing NWP Pipeline
Table ES-2: Recommended Turnout Configurations
Table 2-1: Details of Existing NWP Pipeline
Table 2-2: Materials and Pressure Rating of Pipeline Segments
Table 2-3: Details of Appurtenances along the Pipeline
Table 2-4: Maximum Capacities for Turnouts from Existing Appurtenances
Table 3-1: Advantages and Disadvantages of Modification Techniques
Table 3-2: Recommended Turnout Configurations

#### List of Figures

Fig. 2-1: System Schematic
Fig. 2-2: NWP Hydraulic Profile
Fig. 3-1: Typical Bypass System Using Hot Tap
Fig. 3-2: Typical Hot Tapping Assembly
Fig. 3-3: Typical Cut-in Tee
Fig. 3-4: Typical Branch Line from Pumpout
Fig. 3-5: Typical Branch Line from Air Valve Connection

#### List of Attachments

Attachment TM21-1: Tapping Sleeves for Steel and DI Pipes Attachment TM21-2: Recommended Turnout Configuration Details Attachment TM21-3: Unit Maps of Nacimiento Water Project

### **BLACK & VEATCH**

#### MEMORANDUM

SLO County Flood Control and Water Conservation DistrictNacimiento Water ProjectTM 21 – System Expansion and ModificationsConceptual Details and Requirements

| To:               | John R. Hollenbeck, P.E.<br>NWP Project Manager |
|-------------------|-------------------------------------------------|
| From:             | Steve Foellmi, P.E.<br>Project Manager          |
| Prepared By:      | Kevin Tran, P.E.<br>Madhavan K Jayakumar, P.E.  |
| Senior Reviewers: | Paul Kneitz, P.E.<br>Randy Fiorucci, P.E.       |

B&V Project 149789 B&V File No. G.2.21 March 2011

#### **EXECUTIVE SUMMARY**

This Technical Memorandum (TM) is meant to develop alternative methods for incorporating future turnouts into the Nacimiento Water Project (NWP) along the 45 miles of pipelines. Table ES-1 provides details of pipelines from Lake Nacimiento to the last turnout at San Luis Obispo.

|      |                                                 | Pipe     | Pipeline             | Pha               | ise I             | Ultimate          |                   |
|------|-------------------------------------------------|----------|----------------------|-------------------|-------------------|-------------------|-------------------|
| Unit | Description                                     | Material | Diameter<br>(inches) | Flowrate<br>(cfs) | Velocity<br>(fps) | Flowrate<br>(cfs) | Velocity<br>(fps) |
| А    | IPS to Camp Roberts<br>West Property Line       | Steel    | 36                   | 23.49             | 3.32              | 32.79             | 4.64              |
| A1   | Camp Roberts West<br>Property Line to CRT       | Steel    | 36/30                | 23.49             | 3.32/4.79         | 32.79             | 4.64/<br>6.68     |
| С    | CRT Discharge to<br>Monterey Road /<br>Wellsona | Steel    | 36                   | 23.49             | 3.32              | 32.79             | 4.64              |
| C1   | Monterey Road /<br>Wellsona to Sta.<br>829+50   | Steel    | 36                   | 23.49             | 3.32              | 32.79             | 4.64              |

Table ES-1: Details of Existing NWP Pipeline



B&V Project 148379 B&V File No. G.2.21 March 2011

|      |                                                                                      |                  | Pipeline             | Pha               | Phase I           |                   | Ultimate          |  |
|------|--------------------------------------------------------------------------------------|------------------|----------------------|-------------------|-------------------|-------------------|-------------------|--|
| Unit | Description                                                                          | Pipe<br>Material | Diameter<br>(inches) | Flowrate<br>(cfs) | Velocity<br>(fps) | Flowrate<br>(cfs) | Velocity<br>(fps) |  |
| C1   | From Sta. 829+50 to<br>T2 Turnout Tee off<br>(Paso Robles)                           | Steel            | 30                   | 23.49             | 4.79              | 32.79             | 6.68              |  |
| T2   | Paso Robles Turnout                                                                  | DI and<br>Steel  | 24                   | 9.03              | 2.87              | 12.90             | 4.10              |  |
| В    | Santa Ysabel Pump<br>Station                                                         | Steel            | 24                   | 14.46             | 4.60              | 19.89             | 6.33              |  |
| D    | Paso Robles Turnout<br>Tee off to T4 (TCSD)<br>Turnout Tee off<br>(excluding Unit B) | DI and<br>Steel  | 24                   | 14.46             | 4.61              | 19.89             | 6.33              |  |
| T4   | TCSD Turnout                                                                         | DI and<br>Steel  | 8                    | 1.03              | 2.98              | 1.27              | 3.64              |  |
| E    | T4 Turnout Tee off to<br>T6 (AMWC) Turnout<br>Tee off                                | DI               | 24                   | 13.43             | 4.27              | 18.62             | 5.93              |  |
| Т6   | AMWC Turnout                                                                         | DI and<br>Steel  | 18                   | 8.28              | 4.69              | 10.22             | 5.78              |  |
| F    | T6 Turnout Tee off to<br>RCT Inlet                                                   | DI               | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |  |
| F1   | RCT                                                                                  | DI               | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |  |
| F2   | RCPS                                                                                 | Steel            | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |  |
| G    | RCPS Discharge to<br>Route 58/Maria<br>Avenue                                        | DI               | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |  |
| G1   | Route 58/Maria<br>Avenue to CTT Inlet                                                | DI               | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |  |
| G2   | СТТ                                                                                  | DI               | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |  |
| н    | Cuesta Tunnel<br>(existing)                                                          | Steel            | 24                   | 5.14              | 1.64              | 8.40              | 2.67              |  |
| H1   | Cuesta Tunnel to T11<br>(SLO/CSA10A)<br>Turnout                                      | DI               | 12                   | 5.14              | 6.54              | 8.40              | 10.70             |  |
| T11  | SLO/CSA10A<br>Turnout                                                                | Steel            | 12                   | 5.14              | 6.54              | 8.40              | 10.70             |  |



The main pipe sizes vary from 36 inch to12 inch, and two different materials have been used – steel and ductile iron. Some of the pipe sections are installed underground, and some are installed above ground.

Before deciding on a new turnout location, the hydraulics at the preferred location shall be given due consideration to ensure that adequate pressure is available for the required flowrate. Other considerations like easements, orientation of the air valves or pumpout when they are used, location of nearest pull box for fiber optic cable connection, space for installing the turnout structure, valves, controls, and piping and operational impact to the hydraulic transient control shall be adequately considered.

Electromagnetic flowmeters are recommended at turnouts. Flowmeters shall be sized to keep the velocity between 1 to 18 ft/s under all anticipated operating conditions.

Use globe type control valves (Cla Val or equal) for inlet pressures of up to 300 psi. The correct trim shall be selected in consultation with the valve manufacturer. For inlet pressures beyond 300 psi, use sleeve valves for flow control.

Based on the foregoing discussion, four alternatives for buried pipe and three alternatives for above grade pipe are recommended, for both steel and ductile iron pipes. Typical turnout configurations for above ground turnout and below grade turnout are also included.

The order of priority will be as below (most preferred to least preferred), if there are no capacity limitations:

- Air valve lines (can be incorporated without a shutdown, and the resulting turnout will not be too deep)
- Pumpout (can be incorporated without a shutdown, but the resulting turnout would be deep at the beginning)
- Tapping sleeves (a shutdown is required, but the damage to cement mortar lining is much less than a cut-in tee)
- Cut-in tee (a longer shut down than tapping sleeve alternative would be required)

Table ES-2 provides a summary of alternatives developed with recommended flowrates. Turnout designation with 'U' refers an underground turnout and with 'A' refers an above grade turnout.



Drawings TM21-TO-041 provides typical details of an Above Grade Turnout and drawings TM21-TO-051 and 052 provide typical details of an Underground Turnout.

| Turnout<br>Designation | Turnout Description                                        | Existing Line<br>Size, inch   | Maximum<br>Recommended<br>Capacity, cfs | Drawing Number |  |
|------------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------|--|
| TO-U-001               | Underground Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-001    |  |
| 10-0-001               | Air Valve Line – DI Pipe                                   | 6 (Slow Closing<br>Air Valve) | 2.75                                    | 11121-10-001   |  |
| TO-U-002               | Underground Turnout from<br>Pumpout – DI Pipe              | 6                             | 2.75                                    | TM21-TO-002    |  |
| TO-U-003               | Underground Turnout from<br>Cut-in Tee – DI Pipe           | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-003    |  |
| TO-U-004               | Underground Turnout with<br>Tapping Sleeve – DI Pipe       | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-004    |  |
| TO-U-011               | Underground Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-011    |  |
| 10-0-011               | Air Valve Line – Steel Pipe                                | 6 (Slow Closing<br>Air Valve) | 2.75                                    | 111121-10-011  |  |
| TO-U-012               | Underground Turnout from<br>Pumpout – Steel Pipe           | 6                             | 2.75                                    | TM21-TO-012    |  |
| TO-U-013               | Underground Turnout from<br>Cut-in Tee – Steel Pipe        | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-013    |  |
| TO-U-014               | Underground Turnout with<br>Tapping Sleeve – Steel<br>Pipe | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-014    |  |
| TO-A-021               | Above Grade Turnout from<br>Air Valve Line – DI Pipe       | 3 (Regular Air<br>Valve) 0.68 |                                         | TM21-TO-021    |  |
|                        |                                                            | 6 (Slow Closing               | 2.75                                    |                |  |

#### **Table ES-2: Recommended Turnout Configurations**



| Turnout<br>Designation | Turnout Description                                        | Existing Line<br>Size, inch   | Maximum<br>Recommended<br>Capacity, cfs | Drawing Number |
|------------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------|
|                        |                                                            | Air Valve)                    |                                         |                |
| TO-A-023               | Above Grade Turnout from<br>Cut-in Tee – DI Pipe           | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-023    |
| TO-A-024               | Above Grade Turnout with<br>Tapping Sleeve – DI Pipe       | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-024    |
| TO-A-031               | Above Grade Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-031    |
|                        | Air Valve Line – Steel Pipe                                | 6 (Slow Closing<br>Air Valve) | 2.75                                    |                |
| TO-A-033               | Above Grade Turnout from<br>Cut-in Tee – Steel Pipe        | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-033    |
| TO-A-034               | Above Grade Turnout with<br>Tapping Sleeve – Steel<br>Pipe | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-034    |
| TO-A                   | Above Grade Turnout<br>Typical Layout                      | All Sizes                     | N/A                                     | TO-A-041       |
| TO-U                   | Underground Turnout<br>Typical Layout Plans                | All Sizes                     | N/A                                     | TO-U-051       |
| TO-U                   | Underground Turnout<br>Typical Layout Sections             | All Sizes                     | N/A                                     | TO-U-052       |

Details of these recommended turnout configurations are included as Attachment TM21-2. The order of priority for the new turnouts will be as listed below (most preferred to least

preferred), if there are no capacity limitations:

- Air valve lines (can be incorporated without a shutdown, and the resulting turnout will not be too deep)
- Pumpout (can be incorporated without a shutdown, but the resulting turnout would be deep at the beginning)



- Tapping sleeves (a shutdown is required, but the damage to cement mortar lining is much less than a cut-in tee)
- Cut-in tee (a longer shut down than tapping sleeve alternative would be required)

On the existing pipelines, the corrosion monitoring measures are limited to the following:

- Insulating joints between dissimilar metal joints. This was followed for all buried joints between steel and ductile iron pipes, fittings and valves
- American Water Works Association (AWWA) C217 3 Part Wax Tape coating system for buried insulating flange joints
- Cathodic test stations consisting of test leads exothermally welded to the pipe and to a reference electrode at regular intervals (approximately every 1500 ft)
- At pipeline crossings, provide test leads from the existing pipe (in coordination with the owner of existing pipeline) and new pipelines terminated in a test station
- Bonding continuity between valves, pushon joints, flexible coupling, and non-insulated joints

For the turnouts, corrosion monitoring measures similar to these would be adequate, unless there is a drastic change in soil conditions.

There will be minor damages to the existing cement mortar lining (and coating) during these modifications, and they shall be repaired following procedures outlined in AWWA C104.

The existing pipelines are provided with surge control systems at the pump stations and transient pressure monitoring system (TP-1) at nine locations. Any expansion shall consider extending these measures. Details are included within this TM.



# **1.0 INTRODUCTION**

This Technical Memorandum (TM) is developed to explore alternatives and provide guidelines for incorporating future expansion of the pipeline system, mainly through addition of new turnouts. Typical details provided herein are guidelines for the use by engineers performing detailed design of future facilities.

### 1.1 Purpose of Technical Memorandum

The TM will cover the following details for incorporating any future expansion of the Nacimiento Water Project Network.

- Possible connection details for future expansion
- Protection of pipe lining during expansion
- Corrosion monitoring requirements for the expanded network
- Surge protection and monitoring

Each of these aspects will be elaborated in this TM. Depending on the actual scenario, one of the alternatives could be selected for implementation during the expansion. Pipe laying, pipe pressure rating, fiber optic installation, electrical design etc. shall be determined on a case to case basis and are not covered in this TM.

# 1.2 List of Terms, Acronyms, and Abbreviations

| AMWC   | Atascadero Mutual Water Company        |
|--------|----------------------------------------|
| ANSI   | American National Standards Institute  |
| AR/AV  | Air Release / Air Vacuum Valve         |
| AWWA   | American Water Works Association       |
| B&V    | Black & Veatch Corporation             |
| cfs    | cubic feet per second                  |
| CRT    | Camp Roberts Tank                      |
| CSA10A | County Service Area 10, Benefit Zone A |
| СТТ    | Cuesta Tunnel Tank                     |
| DI     | ductile iron                           |
| Dia    | Diameter                               |
| DIPRA  | Ductile Iron Pipe Research Association |
| ft     | feet                                   |
| ft/s   | feet per second                        |



B&V Project 149789 B&V File No. G.2.21 March 2011

| HDD            | Horizontal Directional Drilling                                              |
|----------------|------------------------------------------------------------------------------|
| HGL            | Hydraulic Grade Line                                                         |
| ID             | inside diameter                                                              |
| in             | inches                                                                       |
| IPS            | Intake Pump Station                                                          |
| NWP            | Nacimiento Water Project                                                     |
| OD             | Outside diameter                                                             |
| Phase I Flow   | Flow entitlement per WDEC                                                    |
| Pressure Class | The pipe internal pressure rating based on the Project Basis of Design (psi) |
| Project        | Nacimiento Water Project                                                     |
| psi            | Pounds per square inch, gauge                                                |
| RCPS           | Rocky Canyon Pump Station                                                    |
| RCT            | Rocky Canyon Tank                                                            |
| RFCA           | Restrained Flange Coupling Adapter                                           |
| SCADA          | Supervisory Control and Data Acquisition                                     |
| SLO            | City of San Luis Obispo                                                      |
| SYPS           | Santa Ysabel Pump Station                                                    |
| T2             | City of Paso Robles Turnout                                                  |
| T4             | TCSD Turnout                                                                 |
| Т6             | AMWC Turnout                                                                 |
| T11            | SLO/CSA10A Turnout                                                           |
| TCSD           | Templeton Community Services District                                        |
| ТМ             | Technical Memorandum                                                         |
| TP-1           | Transient pressure monitoring system                                         |
| Ultimate Flow  | Maximum flow entitlement of NWP                                              |
| WDEC           | Water Delivery Entitlement Contract                                          |



# 2.0 DETAILS OF EXISTING PIPELINES

# 2.1 Overview

This section provides a summary of existing pipelines.

# 2.2 Existing Pipelines and Facilities

The existing Nacimiento Water Project (NWP) pipeline starts at Lake Nacimiento with an Intake and Pump Station (IPS). The pumps at IPS will pump water either to Camp Roberts Tank (CRT) or Rocky Canyon Tank (RCT). From the CRT, water flows by gravity to Santa Ysabel Pump Station (SYPS). Paso Robles Turnout (T2) is located between the CRT and the SYPS. Pumps at the SYPS will boost the pressure of incoming water and feed the RCT. Templeton Community Services (TCSD) Turnout (T4) and Atascadero Mutual Water Company (AMWC) Turnout (T6) are located between the SYPS and the RCT. Rocky Canyon Pump Station (RCPS) is located downstream of the RCT and draws water from the RCT and pumps to Cuesta Tunnel Tank (CTT). From the CTT, water flows by gravity to the City of San Luis Obispo/County Service Area 10, Benefit Zone A (SLO/CSA10A) Turnout (T11), which is connected to the San Luis Obispo Water Treatment Plant. The pipeline is designated as different units for easy identification. Table 2-1 provides a summary of all the pipelines, with unit designations, diameter, pipe material, flowrates and velocities. The NWP is built to meet the ultimate design capacity of 32.79 cubic per second (cfs) from Lake Nacimiento, but during initial operating periods (termed Phase 1), the demand would be low. Both steel and ductile iron (DI) pipes were allowed in the design. One of the three main pipeline contractors provided steel pipes, and the other two provided DI pipes. Turnouts T2, T4 and T6 are a combination of DI and steel pipes because all horizontal directional drilling (HDD) to cross rivers used steel pipes.

|      |                                           | Pipe     | Pipeline             | Phase I           |                   | Ultimate          |                   |
|------|-------------------------------------------|----------|----------------------|-------------------|-------------------|-------------------|-------------------|
| Unit | Description                               | Material | Diameter<br>(inches) | Flowrate<br>(cfs) | Velocity<br>(fps) | Flowrate<br>(cfs) | Velocity<br>(fps) |
| А    | IPS to Camp Roberts<br>West Property Line | Steel    | 36                   | 23.49             | 3.32              | 32.79             | 4.64              |
| A1   | Camp Roberts West<br>Property Line to CRT | Steel    | 36/30                | 23.49             | 3.32/4.79         | 32.79             | 4.64/<br>6.68     |

 Table 2-1: Details of Existing NWP Pipeline



B&V Project 149789 B&V File No. G.2.21 March 2011

|      |                                                                                      | Pipe            | Pipeline             | Pha               | ise I             | Ultim             | ate               |
|------|--------------------------------------------------------------------------------------|-----------------|----------------------|-------------------|-------------------|-------------------|-------------------|
| Unit | Description                                                                          | Material        | Diameter<br>(inches) | Flowrate<br>(cfs) | Velocity<br>(fps) | Flowrate<br>(cfs) | Velocity<br>(fps) |
| С    | CRT Discharge to<br>Monterey Road /<br>Wellsona                                      | Steel           | 36                   | 23.49             | 3.32              | 32.79             | 4.64              |
| C1   | Monterey Road /<br>Wellsona to Sta.<br>829+50                                        | Steel           | 36                   | 23.49             | 3.32              | 32.79             | 4.64              |
| C1   | From Sta. 829+50 to<br>T2 Turnout Tee off<br>(Paso Robles)                           | Steel           | 30                   | 23.49             | 4.79              | 32.79             | 6.68              |
| T2   | Paso Robles Turnout                                                                  | DI and<br>Steel | 24                   | 9.03              | 2.87              | 12.90             | 4.10              |
| В    | Santa Ysabel Pump<br>Station                                                         | Steel           | 24                   | 14.46             | 4.60              | 19.89             | 6.33              |
| D    | Paso Robles Turnout<br>Tee off to T4 (TCSD)<br>Turnout Tee off<br>(excluding Unit B) | DI and<br>Steel | 24                   | 14.46             | 4.61              | 19.89             | 6.33              |
| T4   | TCSD Turnout                                                                         | DI and<br>Steel | 8                    | 1.03              | 2.98              | 1.27              | 3.64              |
| E    | T4 Turnout Tee off to<br>T6 (AMWC) Turnout<br>Tee off                                | DI              | 24                   | 13.43             | 4.27              | 18.62             | 5.93              |
| Т6   | AMWC Turnout                                                                         | DI and<br>Steel | 18                   | 8.28              | 4.69              | 10.22             | 5.78              |
| F    | T6 Turnout Tee off to<br>RCT Inlet                                                   | DI              | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |
| F1   | RCT                                                                                  | DI              | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |
| F2   | RCPS                                                                                 | Steel           | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |
| G    | RCPS Discharge to<br>Route 58/Maria<br>Avenue                                        | DI              | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |
| G1   | Route 58/Maria<br>Avenue to CTT Inlet                                                | DI              | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |
| G2   | CTT                                                                                  | DI              | 18                   | 5.14              | 2.91              | 8.40              | 4.76              |
| н    | Cuesta Tunnel<br>(existing)                                                          | Steel           | 24                   | 5.14              | 1.64              | 8.40              | 2.67              |



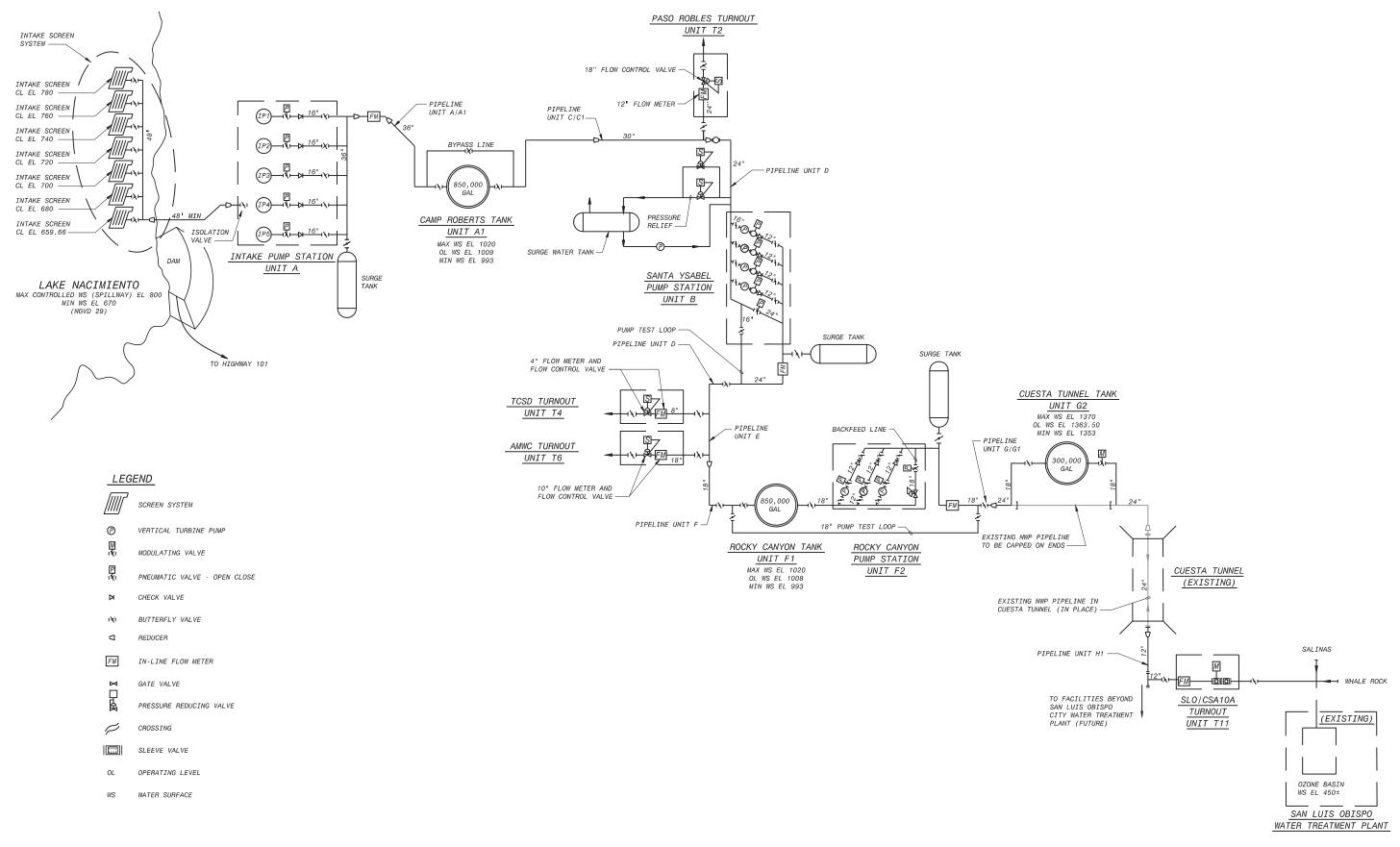
|      |                                                 | Pipe     | Pipeline             | Phase I           |                   | Ultimate          |                   |
|------|-------------------------------------------------|----------|----------------------|-------------------|-------------------|-------------------|-------------------|
| Unit | Description                                     | Material | Diameter<br>(inches) | Flowrate<br>(cfs) | Velocity<br>(fps) | Flowrate<br>(cfs) | Velocity<br>(fps) |
| H1   | Cuesta Tunnel to T11<br>(SLO/CSA10A)<br>Turnout | DI       | 12                   | 5.14              | 6.54              | 8.40              | 10.70             |
| T11  | SLO/CSA10A<br>Turnout                           | Steel    | 12                   | 5.14              | 6.54              | 8.40              | 10.70             |

Table 2-2 provides details of materials and pressure ratings of different segments of the pipelines:

 Table 2-2: Materials and Pressure Ratings of Pipeline Segments

|          | Pipe              | Station    |        | Pipe     | Pressure | Min. Cylinder           |
|----------|-------------------|------------|--------|----------|----------|-------------------------|
| Unit     | Diameter,<br>Inch | From       | То     | Material | Class    | Wall Thickness,<br>inch |
| А        | 36                | IPS (0+00) | 4+00   | Steel    | 150      | 0.188                   |
| А        | 36                | 4+00       | 12+00  | Steel    | 150      | 0.188                   |
| А        | 36                | 12+00      | 26+00  | Steel    | 200      | 0.234                   |
| А        | 36                | 26+00      | 82+00  | Steel    | 250      | 0.284                   |
| А        | 36                | 82+00      | 88+24  | Steel    | 200      | 0.234                   |
| A1       | 36                | 88+24      | 98+06  | Steel    | 200      | 0.234                   |
| A1 (HDD) | 30                | 98+06      | 114+65 | Steel    | -        | 0.500                   |
| A1       | 36                | 114+65     | 155+00 | Steel    | 200      | 0.234                   |
| A1       | 36                | 155+00     | 180+00 | Steel    | 250      | 0.284                   |
| A1       | 36                | 180+00     | 222+00 | Steel    | 200      | 0.234                   |
| A1       | 36                | 222+00     | 263+50 | Steel    | 250      | 0.284                   |
| A1       | 36                | 263+50     | 348+00 | Steel    | 200      | 0.234                   |
| A1       | 36                | 348+00     | 529+28 | Steel    | 150      | 0.188                   |
| CRT      | 36                | 529+28     | 536+57 | Steel    | 150      | 0.188                   |
| С        | 36                | 536+57     | 787+00 | Steel    | 150      | 0.188                   |
| C1       | 36                | 787+00     | 829+50 | Steel    | 150      | 0.188                   |
| C1       | 30                | 829+50     | 901+86 | Steel    | 150      | 0.154                   |
| C1 (HDD) | 30                | 901+86     | 904+30 | Steel    | 150      | 0.154                   |




B&V Project 149789 B&V File No. G.2.21 March 2011

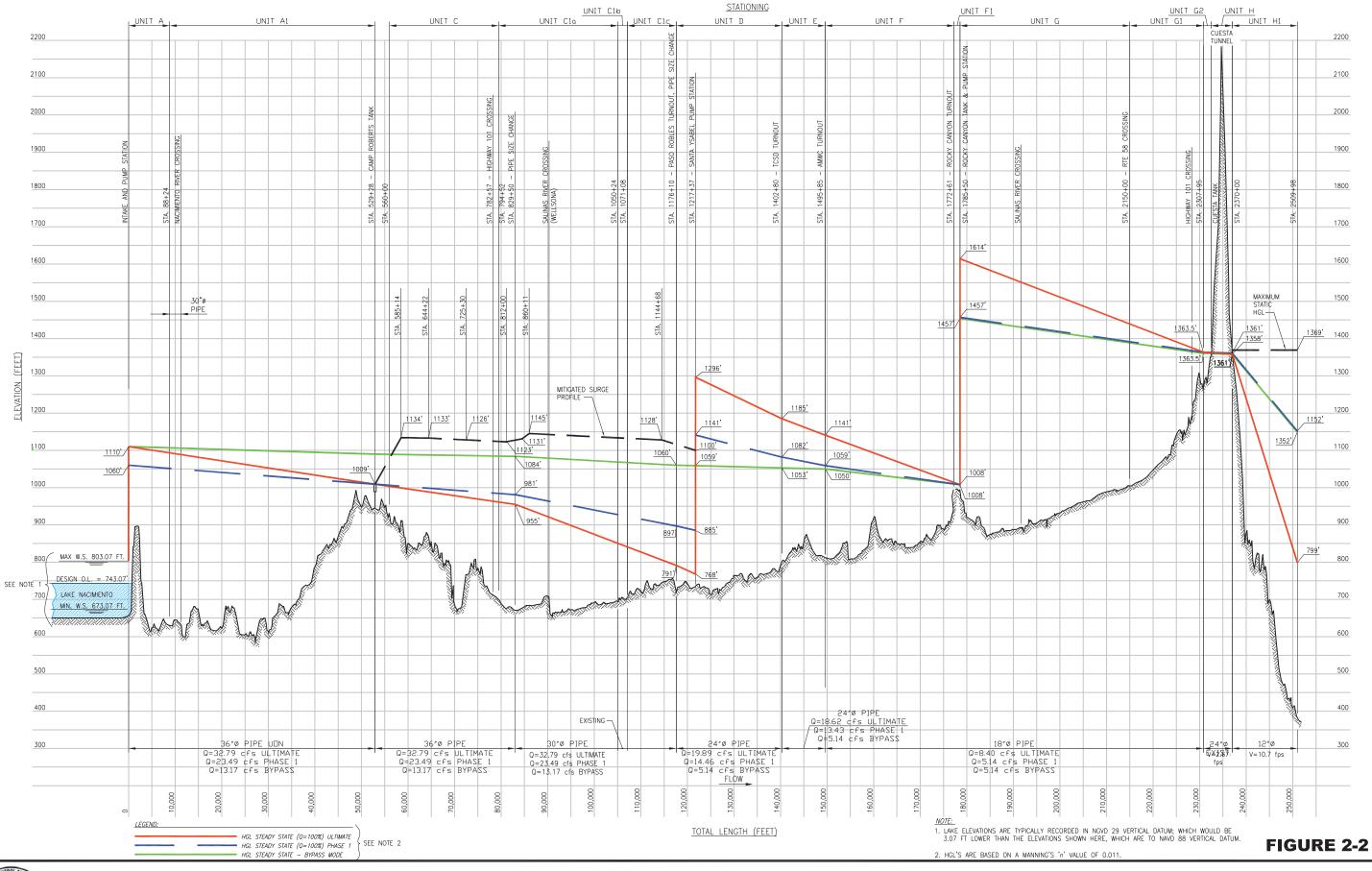
|          | Pipe              |         |         | Pipe     | Pressure | Min. Cylinder           |
|----------|-------------------|---------|---------|----------|----------|-------------------------|
| Unit     | Diameter,<br>Inch | From    | То      | Material | Class    | Wall Thickness,<br>inch |
| C1 (HDD) | 30                | 904+30  | 911+62  | Steel    | 200      | 0.190                   |
| C1       | 30                | 911+62  | 940+00  | Steel    | 200      | 0.190                   |
| C1       | 30                | 940+00  | 1157+50 | Steel    | 150      | 0.154                   |
| C1       | 30                | 1157+50 | 1176+10 | Steel    | 250      | 0.240                   |
| D        | 24                | 1176+10 | 1223+77 | DI       | 250      | -                       |
| D (HDD)  | 24                | 1223+77 | 1252+91 | Steel    | -        | 0.50                    |
| D        | 24                | 1252+91 | 1410+00 | DI       | 250      | -                       |
| D        | 24                | 1401+00 | 1414+00 | DI       | 200      | -                       |
| E        | 24                | 1414+00 | 1490+00 | DI       | 200      | -                       |
| F        | 24                | 1490+00 | 1495+95 | DI       | 200      | -                       |
| F        | 18                | 1495+95 | 1772+61 | DI       | 250      | -                       |
| F1 & F2  | RCT/RCPS          | 1772+61 | 1785+50 | Mix      | -        | -                       |
| G        | 18                | 1785+50 | 1886+00 | DI       | 350      | -                       |
| G        | 18                | 1886+00 | 2016+00 | DI       | 300      | -                       |
| G        | 18                | 2016+00 | 2151+57 | DI       | 250      | -                       |
| G1       | 18                | 2151+57 | 2308+08 | DI       | 250      | -                       |
| G2       | СТТ               | -       | -       | Mix      | -        | -                       |
| H1       | 12                | 2370+00 | 2510+28 | DI       | 350      | -                       |

### 2.3 Pipeline Route, System Schematic and HGL

Figure 2-1 is the System Schematic and Figure 2-2 is the Hydraulic Profile. Figures 2-3 to 2-24 are unit maps of the NWP and provide details of the pipeline route. Figures 2-3 to 2-24 are included as Attachment TM21-3.










San Luis Obispo County Flood Control & Water Conservation District

#### MANUAL OF PROCEDURES SYSTEM SCHEMATIC

#### **FIGURE 2-1**





FB137522-MOP B137522-MOP

San Luis Obispo County Flood Control & Water Conservation District

#### MANUAL OF PROCEDURES NWP HYDRAULIC PROFILE

# 2.4 Existing Pipeline Appurtenances

The existing pipelines have the following appurtenances located at different sections:

- Air/vacuum valves
- Pumpouts
- Instruments

Table 2-3 provides a summary of appurtenances along the pipeline.

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance          | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|-----------------------|------------------------------------|--------------------|
| А    | 7+01               | -                                   | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| А    | 22+19              | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| А    | 32+62              | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| Α    | 40+92              | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| Α    | 50+39              | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| А    | 60+79              | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| Α    | 79+28              | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| Α    | 83+41              | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 98+00              | 97+35                               | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 127+64             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 142+27             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 144+80             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 147+16             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 155+70             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 170+70             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 175+58             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 182+91             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 186+53             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 195+15             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 197+20             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 199+97             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |

#### Table 2-3: Details of Appurtenances along the Pipeline



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|--------------|------------------------------------|--------------------|
| A1   | 204+64             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 208+07             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 224+00             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 234+12             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 238+12             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 243+70             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 247+45             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 251+38             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 254+23             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 258+30             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 268+97             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 279+20             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 286+74             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 296+38             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 310+78             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 328+96             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 330+40             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 343+31             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 345+00             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 360+12             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 368+75             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 373+40             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 388+36             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 403+40             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 412+40             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 415+28             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 418+59             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| A1   | 420+75             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| A1   | 426+99             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance          | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|-----------------------|------------------------------------|--------------------|
| A1   | 431+60             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 444+54             | -                                   | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| A1   | 446+65             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 459+50             | -                                   | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| A1   | 474+45             | -                                   | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| A1   | 486+14             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 495+46             | -                                   | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| A1   | 510+84             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| A1   | 513+97             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| A1   | 524+19             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 537+95             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| С    | 543+20             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 545+40             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| С    | 563+58             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 567+72             | 567+79                              | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| С    | 579+44             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 582+30             | -                                   | 36                                | Slow Closing<br>AR/AV | 6                                  | Steel              |
| С    | 593+94             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 597+01             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| С    | 615+95             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 620+56             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| С    | 624+81             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 636+25             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| С    | 644+45             | -                                   | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 646+68             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |
| С    | 650+70             | 650+77                              | 36                                | Pump Out              | 6/12                               | Steel              |
| С    | 655+00             | -                                   | 36                                | AR/AV                 | 3                                  | Steel              |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|--------------|------------------------------------|--------------------|
| С    | 665+40             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 668+56             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 674+18             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 675+34             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 677+99             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 679+68             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 681+57             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 683+87             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 691+54             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 693+87             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 700+87             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 721+75             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 733+17             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 737+24             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 741+46             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 744+38             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 746+07             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 751+10             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 753+98             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| С    | 763+00             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| С    | 766+15             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| C1   | 788+81             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| C1   | 788+86             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| C1   | 807+56             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| C1   | 813+95             | -                                   | 36                                | AR/AV        | 3                                  | Steel              |
| C1   | 826+42             | -                                   | 36                                | Pump Out     | 6/12                               | Steel              |
| C1   | 846+36             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 846+42             | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 849+05             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|--------------|------------------------------------|--------------------|
| C1   | 849+09             | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 853+43             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 854+42             | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 854+47             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 861+61             | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 871+99             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 896+22             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 902+05             | 901+84                              | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 916+10             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 930+12             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 932+02             | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 950+34             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 956+08             | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 986+00             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 993+20             | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1000+70            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1001+31            | 1001+52                             | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1002+68            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1005+27            | 1005+40                             | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1008+50            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1020+59            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1025+05            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1028+79            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1032+26            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1034+52            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1040+90            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1041+01            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1043+84            | 1043+80                             | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1047+82            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|--------------|------------------------------------|--------------------|
| C1   | 1050+06            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1050+11            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1071+29            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1077+44            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1085+43            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1093+30            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1097+56            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1097+64            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1104+16            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1109+37            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1115+71            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1118+13            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1119+26            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1119+52            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1119+61            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1128+00            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1129+00            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1133+05            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1135+86            | 1135+91                             | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1145+00            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1149+25            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1157+23            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1168+74            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| C1   | 1175+38            | -                                   | 30                                | Pump Out     | 6/12                               | Steel              |
| C1   | 1176+00            | -                                   | 30                                | AR/AV        | 3                                  | Steel              |
| D    | 1185+44            | -                                   | 24                                | Pump Out     | 6/12                               | DI                 |
| D    | 1205+29            | -                                   | 24                                | AR/AV        | 3                                  | DI                 |
| D    | 1209+75            | -                                   | 24                                | Pump Out     | 6/12                               | DI                 |
| D    | 1212+85            | -                                   | 24                                | AR/AV        | 3                                  | DI                 |



Conceptual Details and Requirements

B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance          | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|-----------------------|------------------------------------|--------------------|
| D    | 1239+83            | 1240+39                             | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1262+75            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1280+50            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1286+75            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1295+25            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1307+91            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1316+25            | 1315+80                             | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1326+97            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1338-97            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1344+85            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1365+95            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1374+15            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1385+72            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| D    | 1388+85            | 1388+65                             | 24                                | Pump Out              | 6/12                               | DI                 |
| D    | 1410+75            | 1409+10                             | 24                                | AR/AV                 | 3                                  | DI                 |
| Е    | 1414+25            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| E    | 1418+75            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| E    | 1425+60            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| E    | 1436+20            | -                                   | 24                                | Slow Closing<br>AR/AV | 6                                  | DI                 |
| E    | 1457+30            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| E    | 1464+65            | -                                   | 24                                | AR/AV                 | 3                                  | DI                 |
| E    | 1485+00            | -                                   | 24                                | Pump Out              | 6/12                               | DI                 |
| F    | 1522+00            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1532+00            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1581+50            | -                                   | 18                                | Slow Closing<br>AR/AV | 6                                  | DI                 |
| F    | 1600+65            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1606+00            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1609+50            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance          | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|-----------------------|------------------------------------|--------------------|
| F    | 1616+50            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1622+82            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1625+20            | 1625+40                             | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1636+50            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1646+10            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1649+56            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1677+60            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1685+15            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1694+10            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1703+10            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1717+67            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1731+84            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1741+92            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| F    | 1744+26            | 1744+15                             | 18                                | Pump Out              | 6/12                               | DI                 |
| F    | 1759+03            | 1758+35                             | 18                                | Slow Closing<br>AR/AV | 6                                  | DI                 |
| F    | 1766+01            | -                                   | 18                                | Slow Closing<br>AR/AV | 6                                  | DI                 |
| G    | 1789+12            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| G    | 1789+50            | -                                   | 12                                | AR/AV                 | 3                                  | DI                 |
| G    | 1812+00            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| G    | 1817+00            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| G    | 1836+38            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| G    | 1846+50            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| G    | 1847+70            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| G    | 1872+00            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| G    | 1875+00            | -                                   | 18                                | Pump Out              | 6/12                               | DI                 |
| G    | 1911+00            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| G    | 1914+15            | -                                   | 18                                | AR/AV                 | 3                                  | DI                 |
| G    | 1914+19            |                                     | 18                                | Pump Out              | 6/12                               | DI                 |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|--------------|------------------------------------|--------------------|
| G    | 1918+67            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 1927+85            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 1933+50            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 1982+00            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 1990+68            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 1991+91            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2047+10            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2068+50            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2068+70            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2080+87            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2080+95            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2089+10            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2094+00            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2094+50            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2099+50            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2099+95            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2104+50            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2105+90            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2107+50            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2113+45            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G    | 2140+19            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G    | 2146+00            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G1   | 2166+50            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G1   | 2166+60            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G1   | 2170+10            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G1   | 2170+50            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G1   | 2182+70            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |
| G1   | 2183+00            | -                                   | 18                                | Pump Out     | 6/12                               | DI                 |
| G1   | 2219+62            | -                                   | 18                                | AR/AV        | 3                                  | DI                 |



SLO County Flood Control and Water Conservation District Nacimiento Water Project

B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance  | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|---------------|------------------------------------|--------------------|
| G1   | 2222+00            | -                                   | 18                                | Pump Out      | 6/12                               | DI                 |
| G1   | 2232+97            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2236+00            | -                                   | 18                                | Pump Out      | 6/12                               | DI                 |
| G1   | 2249+75            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2252+55            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2256+72            | -                                   | 18                                | Pump Out      | 6/12                               | DI                 |
| G1   | 2256+72            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2258+10            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2259+85            | -                                   | 18                                | Pump Out      | 6/12                               | DI                 |
| G1   | 2268+76            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2271+00            | -                                   | 18                                | Pump Out      | 6/12                               | DI                 |
| G1   | 2274+40            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2290+84            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| G1   | 2300+02            | -                                   | 18                                | Pump Out      | 6/12                               | DI                 |
| G1   | 2304+95            | -                                   | 18                                | AR/AV         | 3                                  | DI                 |
| H1   | 2377+15            | -                                   | 12                                | Pump Out      | 6/12                               | DI                 |
| H1   | 2378+80            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2390+04            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2391+00            | -                                   | 12                                | Pump Out      | 6/12                               | DI                 |
| H1   | 2393+94            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2396+00            | -                                   | 12                                | Pump Out      | 6/12                               | DI                 |
| H1   | 2396+63            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2397+87            | -                                   | 12                                | Service Drain | 3                                  | DI                 |
| H1   | 2399+40            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2403+00            | -                                   | 12                                | Pump Out      | 6/12                               | DI                 |
| H1   | 2405+00            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2410+60            | -                                   | 12                                | Pump Out      | 6/12                               | DI                 |
| H1   | 2414+90            | -                                   | 12                                | AR/AV         | 3                                  | DI                 |
| H1   | 2422+00            | -                                   | 12                                | Pump Out      | 6/12                               | DI                 |



B&V Project 149789 B&V File No. G.2.21 March 2011

| Unit | Labeled<br>Station | Actual<br>Location, if<br>different | Main<br>Pipe<br>Diameter,<br>Inch | Appurtenance | Branch<br>Connection<br>Size, Inch | Branch<br>Material |
|------|--------------------|-------------------------------------|-----------------------------------|--------------|------------------------------------|--------------------|
| H1   | 2427+80            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |
| H1   | 2432+00            | -                                   | 12                                | Pump Out     | 6/12                               | DI                 |
| H1   | 2433+00            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |
| H1   | 2440+00            | -                                   | 12                                | Pump Out     | 6/12                               | DI                 |
| H1   | 2442+00            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |
| H1   | 2445+20            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |
| H1   | 2448+00            | -                                   | 12                                | Pump Out     | 6/12                               | DI                 |
| H1   | 2450+00            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |
| H1   | 2462+88            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |
| H1   | 2481+50            | -                                   | 12                                | AR/AV        | 1                                  | DI                 |
| H1   | 2487+32            | -                                   | 12                                | AR/AV        | 3                                  | DI                 |

The pipeline diameters of the NWP vary between 36 inches (in) to 12 in for the main pipelines, and existing appurtenance connections are either 3 in(for air valves) or 6 in (slow closing air/vacuum valves and pumpouts). The 36 in and 30 in pipeline are steel pipes, and all other sizes are DI, except some localized sections, which are steel (eg. river crossings using HDD, T11 Turnout). All pipes are cement mortar lined, except the river crossings using HDD, which used a paint coating system. All buried pipes are cement mortar coated, and above grade pipes are epoxy coated.

Any of these appurtenances would be a source for expansion, as long as the new expansion capacity at that location could be adequately handled by the branch and there is adequate pressure at the location of the appurtenance to feed the new turnout.

Before deciding on a new turnout location, the hydraulics at the preferred location shall be given due consideration to ensure that adequate pressure is available for the required flowrate. Other considerations like easements, orientation of the air valves or pumpout when they are used, location of nearest pull box for fiber optic cable connection, space for installing the turnout structure, valves, controls and piping shall be adequately considered. The operational impact of the new turnout on the hydraulic transient control system shall also be considered. If the air valve



or pumpout is on the same side of the proposed turnout, that would help in easy routing of the turnout pipe. If the new turnout is closer to an existing fiber optic pull box, connection of new fiber optic cable for the new turnout could be completed without much excavation. Easements (both temporary during construction and permanent) shall be given adequate consideration.

There are two major sizes on which these appurtenances are installed: 3 in for normal air valves, 6 in for slow closing air valves and pumpouts (pumpouts are 6 in at the main pipeline and expands to 12 in). The Ductile Iron Pipe Research Association (DIPRA) recommends a maximum velocity of 14 feet per second (ft/s) through cement mortar lined pipes for fluids without too much abrasive particles. Also, American Water Works Association (AWWA) standard limits the flow velocity through resilient seated gate valves and butterfly valves to 16 ft/s. Considering these recommendations, a maximum velocity of 14 ft/s is recommended through the existing branch lines (like air valves lines, pumpouts and drain lines). This higher velocity is recommended only for the existing pipe. The new pipe to be installed shall be designed for a much lower velocity, compatible with velocities through the existing main pipelines.

Assuming a normal velocity of 14 ft/s through the existing branch lines, the maximum capacity of branch lines would be as listed in Table 2-4:

| Appurtenance                     | Turnout<br>size, inch | Flowrate,<br>cfs |  |
|----------------------------------|-----------------------|------------------|--|
| Air Valve                        | 3                     | 0.68             |  |
| Slow Closing Air Valve / Pumpout | 6                     | 2.75             |  |

Table 2-4: Maximum Capacities for Turnouts from Existing Appurtenances



# 3.0 EXPANSION/MODIFICATION TECHNIQUES

### 3.1 Overview

Future expansion and modifications to the existing pipeline system may become necessary for a variety of reasons. Major reasons are temporary modifications, permanent expansion, and addition of appurtenances.

Temporary modifications include work in response to a pipe break or leak, improving efficiency of the system, or providing a bypass system while the permanent system is being installed. Temporary modification might include temporary bypass system, pressure relief system, line plugging, air release facilities etc. Fig. 3-1 shows a typical bypass system using hot taps.

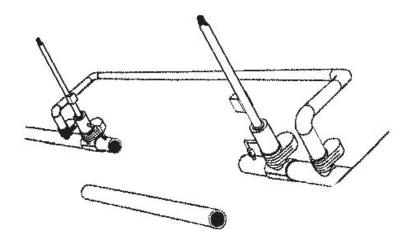



Fig. 3-1 - Typical Bypass System Using Hot Tap

Permanent modifications would become necessary when work is done to provide permanent facilities to maintain system functionality. Permanent modifications include work to incorporate additional turnouts to new customers, replace temporary modifications, replace deteriorated section of pipe, and/or improve efficiency and functionality of the system.

Additional appurtenances refer to the incorporation of new appurtenances such as air valves, pumpouts, instruments etc. to improve the functionality of the existing system.

The following expansion/modification techniques are covered in this TM.



B&V Project 149789 B&V File No. G.2.21 March 2011

- Hot tapping
- Tapping saddles
- Cut-in tee
- Use of existing pumpouts
- Use of existing air valve connection
- Use of existing blind flanges

The following sections describe each of these modification techniques.

# 3.2 Hot Tapping

Hot tapping is a procedure of tie-in, into a pressurized system under normal operating conditions, without a shut down. Typically, hot taps require the use of a tapping fitting, isolation valve, and hot tapping machine. A typical hot tapping procedure is described below:

- Remove the cement mortar coating for buried pipe, after exposing the pipe or clean off epoxy coating for above grade pipes.
- Attach tapping fitting securely to the system pipe to be cut.
- Position the isolation valve (which allows the hole saw or cutter to advance into the pipe without allowing pipe contents to escape) and hot tapping machine in place.
- Pressure test the valve assembly to check for any leakage.
- Move the hole cutter past the open valve to the pipe. The cut begins, and the cutter advances through the pipe wall.
- Upon completion of the cut, withdraw the cutter to just past the gate of the valve, close the valve securely, and remove the cutter.
- The coupon (chunk of pipe that is cut loose) will be retained by the use of a pilot drill to which a wire is attached. The wire is designed so that, once through the coupon, the wire toggles. In this way, the coupon can be easily removed.
- Repair the cement mortar coating or epoxy coating to original condition.
- If this connection is to be retained permanently, repair the lining during the next shutdown of the system.



B&V Project 149789 B&V File No. G.2.21 March 2011

Fig. 3-2 shows a typical hot tapping assembly.

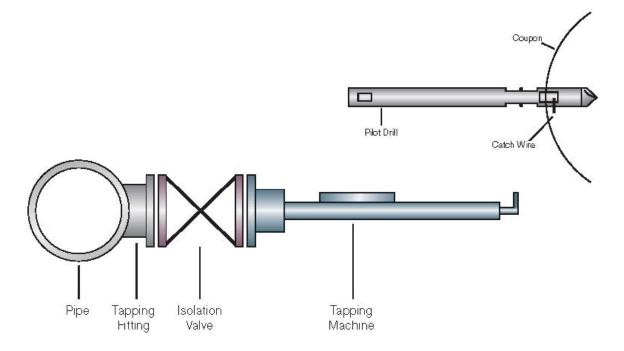



Fig. 3-2 - Typical Hot Tapping Assembly

Since hot tapping is done while the pipe is still under normal operation, it would not be possible to repair cement lining of the existing pipe damaged during hot tapping. Hot tapping should only be considered for temporary expansion and modification such as for emergency repair. Alternately, hot tapping should be immediately followed by a shutdown of the system to repair the cement mortar lining.

Although hot tapping is a relatively simple procedure, it requires equipment specifically designed for this application, proper fittings for the piping system, and qualified technicians to perform the operation. To safely and successfully perform a hot tap operation, the following critical information needs to be obtained prior to the operation.

- Pipe size, material, outside diameter (OD) and inside diameter (ID) or wall thickness, and type of lining for the selection of appropriate tapping machine
- Design pressure and temperature for selection of tapping sleeve and tapping machine
- Operating pressure, temperature, and flowrate during tapping process

Tapping sleeves would be used for this application and must be properly sized to accommodate



the hot tapping machine and to allow for full depth of cutter penetration, and to allow uninterrupted tapping valve closure when the cutter and cut out coupon are retrieved.

- Choose hot tap location and orientation to ensure the connection is positioned to allow for the installation, operation, and removal of the tapping machine.
- Allow clearance at tapping location for staging of equipment.

Attachment TM21-1 includes details of common tapping sleeves available for steel and ductile iron pipes. For both steel and DI pipes, standard tapping sleeves are available up to the required maximum 36 in pipe with maximum branch connection of 24 in. For steel pipes, weld on or strap on tapping sleeves could be used. For DI pipe, strap on tapping sleeves would be used.

Prior to installing tapping sleeves on buried pipelines, the cement mortar coating shall be chipped off locally and the pipe surface cleaned. After installing the tapping sleeve and completing the tapping, the damaged cement mortar lining and coating shall be repaired.

On exposed lines, the coating shall be removed prior to installing a tapping sleeve. The cement mortar lining shall be repaired prior to putting the system back into operation. To accomplish cement mortar lining, a minimum branch line size of 6 in is recommended, even if the turnout size is smaller. The turnout shall be reduced to the required diameter downstream of the branch.

# 3.3 Tapping Sleeves

Use of tapping sleeves would be similar to hot tapping, except that this would be done when the pipeline is shut down and drained. All the details, precautions, and procedures for hot tapping are relevant to installation of tapping sleeves.

# 3.4 Cut-in Tee

A cut-in tee is a procedure of inserting a tee into the main service line after a section of existing pipe is removed. The procedure involves cutting a section of the main line, inserting a tee, making the connection with either couplings (on DI Pipes) or by welding (on steel pipes) on both sides of the tee, and repairing lining and coating. This procedure will involve shutting down the service at the section of pipe where the tee is planned to be inserted. To be consistent with existing materials, provide steel tees on steel pipes and DI tees on DI pipes. Steel tees can either be welded to the existing pipe or connected by using restrained couplings. DI tees shall be connected to the existing pipes using restrained couplings.



B&V Project 149789 B&V File No. G.2.21 March 2011

The cut-in tee procedure allows branch size up to the size of the main pipe. This modification technique can be done at almost any section along the pipeline system. Fig. 3-3 shows a typical cut-in tee installation.

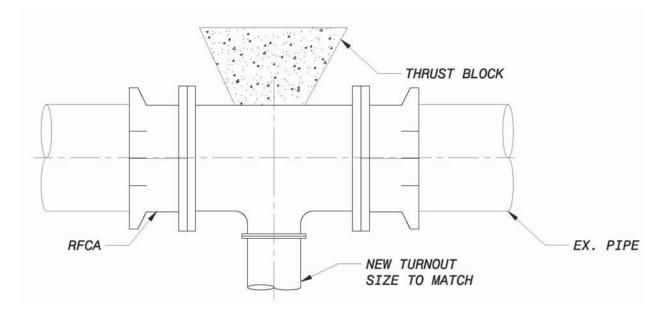



Fig. 3-3 - Typical Cut-In Tee

RFCA – Restrained Flange Coupling Adapter; Ex. - Existing

### 3.5 Use of Existing Pumpouts

The entire pipeline is provided with pumpouts at regular intervals as shown on Table 2-3. The pumpouts start at 6 in at the main line, and expand to 10 in downstream, and are provided with 6 in isolation valves. The pumpout line will not be under pressure downstream of the isolation valve. Thus, when an expansion or modification of branch is required closer to an existing pumpout, the branch could be easily installed on the pumpout line without a shutdown of the main line.

Steps for making a new branch connection on an existing pumpout/drain line are listed below:

- Make sure that the existing pumpout isolation valve is closed
- Cut the existing pumpout pipe downstream of the isolation valve
- Install a new tee with two new isolation valves one on pumpout line downstream of the new tee and one on the branch of the tee



B&V Project 149789 B&V File No. G.2.21 March 2011

- Repair cement mortar coating and lining
- Close new isolation valves
- Open old isolation valve on the pumpout

Fig. 3-4 shows a typical expansion/modification using an existing pumpout.

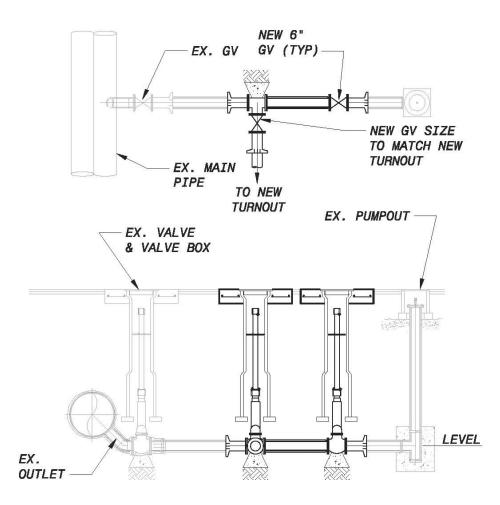



Fig. 3-4 - Typical Branch Line from Pumpout

Use of an existing pumpout for expansion/modification is limited by the maximum capacity through the existing pumpout. Since the pumpouts are located lower than the main pipelines, the new branch connection would be deeper at the beginning.



B&V Project 149789 B&V File No. G.2.21 March 2011

### 3.6 Use of Existing Air Valve Connection

Two sizes of air valves are installed along the pipelines -3 in valves for air/vacuum release and 6 in slow closing air valves for avoiding surges. Where an expansion or modification is required at a location closer to one of these air valves, an existing air valve connection can be used for creating a new branch line. Figure 3-5 shows a typical expansion/modification using an existing air valve line.

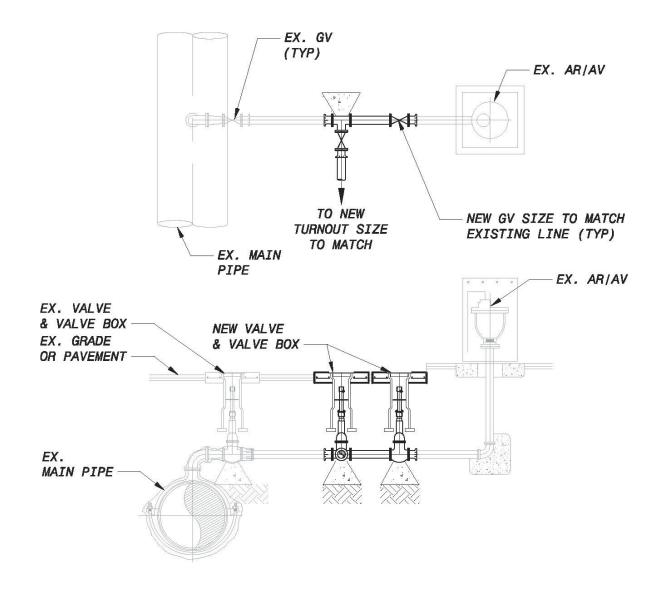



Fig. 3-5: Typical Branch Line from Air Valve Connection



Steps for making a new branch connection on an existing air valve line are listed below:

- Make sure that the existing air line isolation valve is closed (on lines to slow closing air valves, these modifications shall be carried out during low flow conditions)
- Cut the existing air valve connection downstream of the isolation valve
- Install a new tee with two new isolation valves one of air valve line downstream of the new tee and one on the branch of the tee
- Repair cement mortar coating and lining
- Close new isolation valve on the branch line
- Open old isolation valve for the air valve connection

Use of an existing air valve for expansion/modification is limited to the capacity of the existing air valve line. This technique can be done while the system is on normal operation.

### 3.7 Use of Existing Blind Flanges

There are a small number of pipe ends along the pipeline system where blind flanges are installed. Expansion and modifications can be done at these locations by removing the blind flanges and installing the new branch lines, up to the size of the existing blind flange. A total shutdown of the system would be required for making this connection.

### 3.8 Relative Advantages and Disadvantages of Techniques

Prior to selecting a technique for expansion and modification, advantages and disadvantages of each technique should be reviewed. The following table presents the advantages and disadvantages of each technique.

| Techniques        | Advantages                                                                                                                                                                                             | Disadvantages                                                     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Hot Tap           | <ul> <li>Can be done while the pipe is<br/>pressurized and system is in operation</li> <li>Quick installation</li> <li>Can be installed at almost any section<br/>along the pipeline system</li> </ul> | • Lining of existing pipe cannot be repaired, without a shutdown. |
| Tapping<br>Sleeve | <ul><li>Can install up to any branch size</li><li>Lining of existing pipe can be repaired</li></ul>                                                                                                    | • Requires shutdown of section for a branch to be installed       |

| Table 3-1: Advantages and Disadvantages | of Modification Techniques |
|-----------------------------------------|----------------------------|
|-----------------------------------------|----------------------------|



B&V Project 149789 B&V File No. G.2.21 March 2011

| Techniques                          | Advantages                                                                                                                                                                                                                                                         | Disadvantages                                                                                                                                                                                                                                           |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cut-in Tee                          | <ul> <li>Can be installed at almost any section<br/>along the pipeline system</li> <li>Can install up to any branch size</li> <li>Lining of existing pipe can be repaired</li> <li>Can be installed at almost any section<br/>along the pipeline system</li> </ul> | <ul> <li>Require longer time compared<br/>to hot tapping</li> <li>Requires shutdown of section<br/>where the cut-in tee is to be<br/>installed</li> <li>Require longer time to install</li> </ul>                                                       |
| Use of<br>Existing<br>Pumpout       | <ul> <li>Can be done without interruption of system operation</li> <li>Lining of existing pipe can be repaired</li> <li>Quick installation</li> <li>Can be a permanent installation</li> </ul>                                                                     | <ul> <li>than other techniques</li> <li>Size of expansion branch is limited to size of existing pumpout (6 inches maximum)</li> <li>Location is limited to location of existing pumpout</li> <li>Some locations can be very deep</li> </ul>             |
| Use of<br>Existing Air<br>Valve     | <ul> <li>Can be done without interruption of system operation</li> <li>Lining of existing pipe can be repaired</li> <li>Quick installation</li> <li>Can be a permanent installation</li> </ul>                                                                     | <ul> <li>Size of expansion branch is<br/>limited to size of existing air<br/>valve connection line</li> <li>Location is limited to location<br/>of existing air valves</li> <li>Air release valves would be off<br/>line during installation</li> </ul> |
| Use of<br>Existing Blind<br>flanges | • Lining of existing pipe does not require any repair                                                                                                                                                                                                              | <ul> <li>Requires shutdown of existing system</li> <li>There are not many blind flange locations along the pipeline</li> </ul>                                                                                                                          |



#### 3.9 Selection Criteria for Turnout Connections

Prior to making a decision on the type of connection, several aspects should be considered.

- Based on the design flowrate through the new line, determine the diameter of the pipe.
- Calculate head required at the beginning of the branch to feed the new destination.
- From the hydraulic profile, determine an approximate location where the required pressure is available for the new turnout.
- Establish the availability and feasibility of using any of the existing appurtenance connections.
- Other considerations like easements, orientation of the air valves or pumpout when they are used, location of nearest pull box for fiber optic cable connection, space for installing the turnout structure, valves, controls, and piping and operation impact to the hydraulic transient control shall be adequately considered.
- Based on the following criteria, select an appropriate technique:
  - Impact to system operation. Some techniques require system shut down several hours or up to days for completing the modifications.
  - Some of the techniques allow only limited size of connecting branch. The use of existing pumpout and air valves are limited to the size of these appurtenances. Connection sizes up to the main line size are feasible with cut-in tee and through the use of tapping sleeves.
  - Some of the techniques like use of pumpouts, air valve connections etc. are limited to locations of these lines.
  - Temporary or permanent modification is an important selection criteria. Some techniques such as a hot tap can only be used in a temporary modification since lining of existing pipes cannot be repaired using this technique.

#### 3.10 Selection Criteria for Flowmeters

All of the existing turnouts have electromagnetic flowmeters for flow measurement. To be consistent with this approach, all future turnouts shall also be provided with magnetic flowmeters. The flowmeters shall be sized to have a velocity in the range of 1 to 18 ft/s over the expected operating flowrate range. The body pressure rating shall be consistent with the connected piping.



#### 3.11 Selection Criteria for Control Valves

Two types of control valves were used in the existing turnouts – self actuating globe valve and sleeve valve with electric actuator. Two major considerations for selecting control valves are the valve inlet pressure and pressure drop across the valve. Globe valves are available up to an inlet pressure of 300 psi and sleeve valves are suitable for much higher inlet pressures. Normal globe valves can handle a pressure drop of approximately 60% of inlet pressure, beyond which special valves with anti-cavitation trim would be required. Globe valves are available from the CLA-VAL Company. Consult CLA-VAL Company for proper selection in such cases. CLA-VAL Cavitation Guide under the following link provides a rough guide for determining the need for anti-cavitation trims.

http://www.cla-val.com/pdfs/E-Cavitation\_Guide.pdf

Globe valves are less expensive compared to sleeve valves and should be the first choice, if they can handle the inlet pressure and pressure drop. If either the inlet pressure or the pressure drop across the globe valve is beyond its capabilities, sleeve type valves shall be used.

#### 3.12 Recommended Alternatives and Configurations

Based on the foregoing discussion, four alternatives for buried pipe and three alternatives for above grade pipe are recommended, for both steel and ductile iron pipes. Typical turnout configuration for a above ground turnout and below grade turnout are also included.

The order of priority will be as below (most preferred to least preferred), if there are no capacity limitations:

- Air valve lines (can be incorporated without a shutdown, and the resulting turnout will not be too deep)
- Pumpout (can be incorporated without a shutdown, but the resulting turnout would be deep at the beginning)
- Tapping sleeves (a shutdown is required, but the damage to cement mortar lining is much less than a cut-in tee)
- Cut-in tee (a longer shut down than tapping sleeve alternative would be required)

Table 3-2 provides a summary of alternatives developed with recommended flowrates through each size. Turnout designation with 'U' refers an underground turnout and with 'A' refers an above grade turnout. Drawings TM21-TO-041 provides typical details of an Above Grade



Turnout and drawings TM21-TO-051 and 052 provide typical details of an Underground Turnout.

| Turnout<br>Designation | Turnout Description                                        | Existing Line<br>Size, inch   | Maximum<br>Recommended<br>Capacity, cfs | Drawing Number |
|------------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------|
| TO-U-001               | Underground Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-001    |
|                        | Air Valve Line – DI Pipe                                   | 6 (Slow Closing<br>Air Valve) | 2.75                                    |                |
| TO-U-002               | Underground Turnout from<br>Pumpout – DI Pipe              | 6                             | 2.75                                    | TM21-TO-002    |
| TO-U-003               | Underground Turnout from<br>Cut-in Tee – DI Pipe           | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-003    |
| TO-U-004               | Underground Turnout with<br>Tapping Sleeve – DI Pipe       | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-004    |
| TO-U-011               | Underground Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-011    |
|                        | Air Valve Line – Steel Pipe                                | 6 (Slow Closing<br>Air Valve) | 2.75                                    |                |
| TO-U-012               | Underground Turnout from<br>Pumpout – Steel Pipe           | 6                             | 2.75                                    | TM21-TO-012    |
| TO-U-013               | Underground Turnout from<br>Cut-in Tee – Steel Pipe        | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-013    |
| TO-U-014               | Underground Turnout with<br>Tapping Sleeve – Steel<br>Pipe | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-014    |
| TO-A-021               | Above Grade Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-021    |
| 10 / 021               | Air Valve Line – DI Pipe                                   | 6 (Slow Closing<br>Air Valve) | 2.75                                    |                |
| TO-A-023               | Above Grade Turnout from                                   | Same as<br>main               | Limited by<br>Main Pipeline             | TM21-TO-023    |

#### Table 3-2: Recommended Turnout Configurations



B&V Project 149789 B&V File No. G.2.21 March 2011

| Turnout<br>Designation | Turnout Description                                        | Existing Line<br>Size, inch   | Maximum<br>Recommended<br>Capacity, cfs | Drawing Number |
|------------------------|------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------|
|                        | Cut-in Tee – DI Pipe                                       | pipeline                      | Capacity                                |                |
| TO-A-024               | Above Grade Turnout with<br>Tapping Sleeve – DI Pipe       | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-024    |
| TO-A-031               | Above Grade Turnout from                                   | 3 (Regular Air<br>Valve)      | 0.68                                    | TM21-TO-031    |
| 10-A-031               | Air Valve Line – Steel Pipe                                | 6 (Slow Closing<br>Air Valve) | 2.75                                    |                |
| TO-A-033               | Above Grade Turnout from<br>Cut-in Tee – Steel Pipe        | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-033    |
| TO-A-034               | Above Grade Turnout with<br>Tapping Sleeve – Steel<br>Pipe | Same as<br>main<br>pipeline   | Limited by<br>Main Pipeline<br>Capacity | TM21-TO-034    |
| TO-A                   | Above Grade Turnout<br>Typical Layout                      | All Sizes                     | N/A                                     | TO-A-041       |
| TO-U                   | Underground Turnout<br>Typical Layout Plans                | All Sizes                     | N/A                                     | TO-U-051       |
| TO-U                   | Underground Turnout<br>Typical Layout Sections             | All Sizes                     | N/A                                     | TO-U-052       |

Details of these connections are included as Attachment TM21-2.



#### 4.0 CORROSION MONITORING

#### 4.1 Overview

This section provides a brief summary of corrosion monitoring measures on the existing pipelines and ways to protect them during expansion. Corrosion monitoring methods for the new pipelines are also described.

#### 4.2 Existing Pipeline Corrosion Monitoring Methods

On the existing pipelines, the corrosion monitoring measures are limited to the following:

- Insulating joints between dissimilar metal joints. This was followed for all buried joints between steel and ductile iron pipes, fittings and valves, aimed at corrosion prevention.
- AWWA C217 3 Part Wax Tape coating system for buried insulating flange joints.
- Cathodic test stations consisting of test leads exothermally welded to the pipe and to a reference electrode at regular intervals (approximately every 1500 ft).
- At pipeline crossings, provide test leads from the existing pipe (in coordination with the owner of existing pipeline) and new pipelines terminated in a test station.
- Bonding continuity between valves, pushon joints, flexible coupling, and non-insulated joints.

### 4.3 Suggested Corrosion Monitoring Methods for New Pipelines

For the new pipelines, corrosion monitoring similar to the existing pipelines would be adequate, as long the new pipelines are passing through soil of similar nature.



#### 5.0 PROTECTION OF CEMENT MORTAR LINING

#### 5.1 Overview

Lining of the existing pipe will likely be damaged by any of the techniques described above. Protection of the existing lining is required during these modifications. The following sections describe the existing cement mortar lining and methods to protect the lining during the expansion and modifications of the pipeline system.

### 5.2 Existing Cement Mortar Lining

Lining of the existing steel pipe is per AWWA C205 Table 1, with a minimum thickness of 3/8 in. cement mortar lining. The existing ductile iron pipes are cement mortar lined according to AWWA C104/A21.4.

### 5.3 Suggested Cement Mortar Lining Protection Methods

Cement lining will withstand normal handling; however, care should be taken during cutting of the existing pipe or making connection for expansion. AWWA C104 provides that damaged lining may be repaired, and the following repair procedure is recommended:

- Cut out the damaged lining to the metal. Square the edges.
- Thoroughly wet the cut-out area and adjoining lining.
- With the damaged area cleaned and the adjoining lining wet, spread the mortar evenly over the area to be patched. After the lining has become firm and adheres well to the surface, finish it with a wet paint brush or similar soft bristle brush.
- The repaired lining should be kept moist by tying canvas, wet burlap, or other wrap over the ends of the pipe or fitting for at least 24 hours. As an alternative, the repaired lining may be seal coated with a cut back type of asphaltic seal coating. This must be sprayed or brushed on within five to 30 minutes after lining.



#### 6.0 SURGE PROTECTION AND MONITORING

#### 6.1 Overview

This section provides a brief summary of surge control and surge monitoring systems for the existing pipelines and ways to extend these measures for the new pipelines to be added; details of the Surge Protection and Monitoring Systems are provided in the Manual of Procedures.

#### 6.2 Existing Surge Control and Monitoring Measures

Following are the surge control measures implemented on the project:

- An air/water surge vessel, 8 ft diameter (dia) x 57 ft long is installed at the IPS and connected to the common pump discharge header.
- An air/water surge vessel, 8 ft dia x 44 ft long is installed at the SYPS and connected to the common pump discharge header.
- An air/water surge vessel, 6 ft dia x 12 ft long is installed at the RCPS and connected to the common pump discharge header.
- Slow closing air release/air vacuum valves are installed at selected high points as shown on Table 2-3.
- All the turnout control valves are provided with actuators with a minimum operating time from full open to full close of three minutes.

For surge monitoring, sophisticated TP-1 has been installed at the following locations:

- IPS pump common discharge header
- On main pipeline high point upstream of CRT (Sta. 474+45.92)
- Paso Robles Turnout (T2)
- SYPS pump common suction header
- SYPS pump common discharge header
- AMWC Turnout (T6)
- RCPS pump common suction header
- RCPS pump common discharge header
- SLO/CSA10A Turnout (T11)



The TP-1 system will record surge pressures on a real time basis at very small increments and would be a useful tool for analyzing the surge event and taking corrective actions as required.

#### 6.3 Suggested Surge Control and Monitoring Measures

The surge control measures already incorporated in the design would be adequate as long as the pumps are not modified and the following aspects are taken care of in the design of the new turnouts:

- Provide slow closing AR/AVs at all high points higher than the existing pipelines.
- Turnout control valves shall be selected to have a minimum operating time of three minutes, as has been followed for the existing turnout control valves.
- Keep the velocity through the new pipelines within comparable limits of existing pipelines (4 to 6.5 ft/s).
- Design the new pipelines with a wall thickness sized for factor of safety of at least 3.5 (related to tensile strength) for normal operating pressures.

If any of the above could not be met, a detailed surge analysis is recommended.

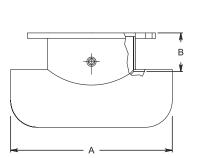
For monitoring surge pressures, PipeTech International (supplier of existing TP-1 system) recommends that a TP-1 be installed on the new turnout when the turnout diameter is at least 25% of the main pipeline to which the turnout is connected (any turnout larger than 6 in on a 24 in main line shall be provided with a TP-1 system). Consultation with the PipeTech International is recommended.

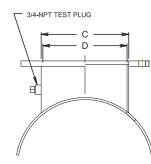


# ATTACHMENT TM21-1 TYPICAL TAPPING SLEEVES



## "FTS445" Steel Fabricated Tapping Sleeve


Material Specifications


**Body and Outlet Nozzle:** Carbon steel, A-36 or equal. Also available with type 304 stainless steel (style STS445)

**Flange:** Carbon steel, A-36 or equal. AWWA Class "D" plate flange, ANSI CLS 150 drilling, proper recessing for tapping valves. Will accommodate tapping flanges per MSS SP-60.

Test Plug: 3/4" NPT type 304 stainless steel test plug.

**Coatings:** Romac shopcoat for corrosion protection in transit. Optional fusion epoxy 8-12 mil. lined and coated. Edges and ID masked where weld is required. Romac packages sleeves to protect coating.

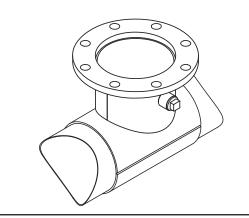




#### Fabricated Tapping Sleeve for Weld-on Outlets



| FLANGE |      | DIME | MIN. PIPE |       |          |
|--------|------|------|-----------|-------|----------|
| SIZE   | Α    | В    | С         | D     | DIAMETER |
| 4"     | 9.0  | 5.18 | 5.03      | 4.73  | 6.00     |
| 6"     | 12.0 | 5.18 | 7.03      | 6.73  | 8.00     |
| 8"     | 16.0 | 5.18 | 9.03      | 8.73  | 10.00    |
| 10"    | 20.0 | 5.50 | 11.03     | 10.73 | 12.00    |
| 12"    | 22.0 | 5.75 | 13.03     | 12.73 | 14.00    |
| 14" *  | 24.0 | 6.00 | 15.03     | 14.73 | 16.00    |
| 16" *  | 29.0 | 6.00 | 17.03     | 16.73 | 20.00    |
| 18" *  | 32.0 | 6.00 | 19.03     | 18.73 | 22.00    |
| 20" *  | 35.0 | 6.00 | 21.03     | 20.73 | 24.00    |
| 24" *  | 42.0 | 6.63 | 25.03     | 24.73 | 36.00    |


\* Please specify tapping valve manufacturer, and flange dimensions for flange sizes larger than 12 inches.

Larger sizes and outlets available.

All prices POA

Sleeves designed for a minimum pipe wall thickness of 0.25" and a minumum pipe material yield strength of 36 ksi will be collar style.

Size on size sleeves, and sleeves for thinner or lower strength pipe will require full wrap style sleeve (see illustration below).

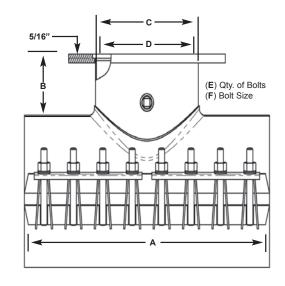


No Cancel, No Return Item.



Body:

662 - Carbon Flange Tapping Sleeve 663 - Stainless Steel Flange Tapping Sleeve Stainless Steel Body and Neck ANSI/NSF® 61 Listed




**Material Specifications** Full circumference band. 18-8 type 304 Stainless Steel. Flanges: AWWA C207 Class D, ANSI 150# drilling.

|             | Recessed for Tapping Valve Per MSS-SP 60.<br>Fusion bonded, Flexi-Coat® epoxy coated<br>carbon steel on 662.<br>18-8 type 304 stainless steel flange on 663.<br>Optional: Other types of Flanges, threaded<br>outlets, MJ Outlets. |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gasket:     | Nitrile (Buna-N) NSF® 61 compounded to resist water, oil, acids, alkalies, most (aliphatic) hydrocarbon fluids and many chemicals. Temperatures up to 180°F.                                                                       |
| Bolts, Nuts | 18-8 type 304 stainless steel heavy hex nuts,                                                                                                                                                                                      |

& Washers: stud bolts & washers. Nuts and studs are coated to prevent galling.

Material specifications are subject to change.



| Outlet Size | Nominal<br>Body Size | A (in.) | B (in.) | C (in.) | D (in.) | E  | F (in.) |
|-------------|----------------------|---------|---------|---------|---------|----|---------|
|             | 4                    | 15      | 5       | 5 1/16  | 4 3/16  | 8  | 5/8     |
| 4           | 6-18                 | 15      | 5       | 5 1/16  | 4 3/4   | 8  | 5/8     |
|             | 20-24                | 20      | 5       | 5 1/16  | 4 3/4   | 15 | 5/8     |
|             | 6                    | 15      | 5       | 7 1/16  | 6 5/16  | 8  | 5/8     |
| 6           | 8-18                 | 15      | 5       | 7 1/16  | 6 3/4   | 8  | 5/8     |
|             | 20-24                | 20      | 5       | 7 1/16  | 6 3/4   | 15 | 5/8     |
|             | 8                    | 20      | 5       | 9 1/16  | 8 3/8   | 10 | 5/8     |
| 8           | 10-18                | 20      | 5       | 9 1/16  | 8 3/4   | 10 | 5/8     |
|             | 20-24                | 25      | 5       | 9 1/16  | 8 3/4   | 24 | 5/8     |
|             | 10                   | 25      | 5       | 11 3/32 | 10 1/4  | 16 | 5/8     |
| 10          | 12-18                | 25      | 5       | 11 3/32 | 10 3/4  | 16 | 5/8     |
|             | 20-24                | 25      | 5       | 11 3/32 | 10 3/4  | 24 | 5/8     |
|             | 12                   | 25      | 5       | 13 3/32 | 12 1/4  | 16 | 5/8     |
| 12          | 14-18                | 25      | 5       | 13 3/32 | 12 3/4  | 16 | 5/8     |
|             | 20-24                | 25      | 5       | 13 3/32 | 12 3/4  | 24 | 5/8     |

#### 662-663 Tapping Sleeve Specifications

Optional 316 Stainless Steel.



# 662 - Carbon Flange Tapping Sleeve 663 - Stainless Steel Flange Tapping Sleeve Smith-Blair Stainless Steel Body and Neck ANSI/NSF® 61 Listed



| Nominal Size of          | O. D.             | 662<br>Flexi-Coat®                   | 663                                  | Approx.                  |
|--------------------------|-------------------|--------------------------------------|--------------------------------------|--------------------------|
| Pipe x Flanged<br>Outlet | Range<br>(Inches) | Epoxy Coated<br>Carbon Steel Flange  | Stainless<br>Steel Flange            | Weight<br>Each<br>Pounds |
|                          |                   | Catalog Number                       | Catalog Number                       |                          |
| 4 x 4                    | 4.46-4.86         | 662-04800400-200                     | 663-04800400-200                     | 32                       |
| 4 × 4                    | 4.80-5.10         | 662-05000400-200                     | 663-05000400-200                     | 34                       |
| 4 x 4                    | 4.90-5.35         | 662-05100400-200                     | 663-05100400-200                     | 40                       |
| 6 x 4                    | 6.59-6.99         | 662-06630400-000                     | 663-06630400-000                     | 38                       |
| 6 × 6                    | 0.59-0.99         | 662-06630600-200                     | 663-06630600-200                     | 42                       |
| 6 x 4                    | 6.84-7.30         | 662-06900400-000                     | 663-06900400-000                     | 38                       |
| 6 × 6                    | 0.04-7.30         | 662-06900600-200                     | 663-06900600-200                     | 42                       |
| 6 x 4                    | 7.10-7.50         | 662-07200400-000                     | 663-07200400-000                     | 38                       |
| 6 × 6                    | 7.10-7.50         | 662-07200600-200                     | 663-07200600-200                     | 42                       |
| 6 x 4                    | 7.40-7.80         | 662-07450400-000                     | 663-07450400-000                     | 38                       |
| 6 × 6                    | 7.40-7.00         | 662-07450600-200                     | 663-07450600-200                     | 42                       |
| 8 x 4                    | 7.90-8.30         | 662-08000400-000                     | 663-08000400-000                     | 43                       |
| 8 x 6                    | 7.90-0.30         | 662-08000600-000                     | 663-08000600-000                     | 63                       |
| 8 x 4                    |                   | 662-08630400-000                     | 663-08630400-000                     | 43                       |
| 8 x 6                    | 8.62-9.06         | 662-08630600-000                     | 663-08630600-000                     | 47                       |
| 8 x 8                    |                   | 662-08630800-200                     | 663-08630800-200                     | 63                       |
| 8 x 4                    |                   | 662-09050400-000                     | 663-09050400-000                     | 43                       |
| 8 x 6                    | 8.99-9.45         | 662-09050600-000                     | 663-09050600-000                     | 47                       |
| 8 x 8                    |                   | 662-09050800-200                     | 663-09050800-200                     | 63                       |
| 8 x 4                    |                   | 662-09450400-000                     | 663-09450400-000                     | 43                       |
| 8 × 6                    | 9.20-9.60         | 662-09450600-000                     | 663-09450600-000                     | 47                       |
| 8 x 8                    |                   | 662-09450800-200                     | 663-09450800-200                     | 63                       |
| 8 x 4                    |                   | 662-09650400-000                     | 663-09650400-000                     | 43                       |
| 8 x 6                    | 9.60-10.00        | 662-09650600-000                     | 663-09650600-000                     | 47                       |
| 8 x 8                    |                   | 662-09650800-200                     | 663-09650800-200                     | 63                       |
| 10 x 4                   |                   | 662-10000400-000                     | 663-10000400-000                     | 47                       |
| 10 x 6                   | 9.90-10.30        | 662-10000600-000                     | 663-10000600-000                     | 51                       |
| 10 x 8                   |                   | 662-10000800-000                     | 663-10000800-000                     | 70                       |
| 10 x 4                   |                   | 662-10750400-000                     | 663-10750400-000                     | 47                       |
| 10 x 6                   | 10.73-11.13       | 662-10750600-000                     | 663-10750600-000                     | 51                       |
| 10 x 8                   |                   | 662-10750800-000                     | 663-10750800-000                     | 70                       |
| 10 × 10                  |                   | 662-10751000-200                     | 663-10751000-200                     | 75                       |
| 10 x 4                   |                   | 662-11100400-000                     | 663-11100400-000                     | 47                       |
| 10 x 6                   | 11.05-11.45       | 662-11100600-000                     | 663-11100600-000                     | 51                       |
| 10 x 8                   |                   | 662-11100800-000                     | 663-11100800-000                     | 70                       |
| 10 x 10                  |                   | 662-11101000-200                     | 663-11101000-200                     | 75                       |
| 10 x 4<br>10 x 6         |                   | 662-11750400-000<br>662-11750600-000 | 663-11750400-000<br>663-11750600-000 | 47                       |
| 10 x 8                   | 11.70-12.10       | 662-11750800-000                     | 663-11750800-000                     | 51<br>70                 |
| 10 x 8<br>10 x 10        |                   | 662-11751000-200                     | 663-11751000-200                     | 70                       |
| 10 x 10                  |                   | 662-12000400-000                     | 663-12000400-000                     | 47                       |
| 10 x 4<br>10 x 6         |                   | 662-12000400-000                     | 663-12000600-000                     | 51                       |
|                          | 12.00-12.40       |                                      |                                      |                          |
|                          |                   |                                      |                                      |                          |
| 10 x 8<br>10 x 10        | 12.00-12.40       | 662-12000800-000<br>662-12001000-200 | 663-12000800-000<br>663-12001000-200 | 70<br>75                 |



# 662 - Carbon Flange Tapping Sleeve 663 - Stainless Steel Flange Tapping Sleeve Smith-Blair ANSI/NSF® 61 Listed



|                        |             | 662                                  |                                      |           |
|------------------------|-------------|--------------------------------------|--------------------------------------|-----------|
| Nominal Size of        |             | Flexi-Coat®                          | 663                                  | Approx.   |
| Pipe x Flanged         | O. D. Range | Epoxy Coated                         | Stainless                            | Weight    |
| Outlet                 | (Inches)    | Carbon Steel Flange                  | Steel Flange                         | Each      |
|                        |             | Catalog Number                       | Catalog Number                       | - Pounds  |
| 12 x 4                 |             | 662-12750400-000                     | 663-12750400-000                     | 51        |
| 12 x 6                 |             | 662-12750600-000                     | 663-12750600-000                     | 55        |
| 12 x 8                 | 12.50-12.90 | 662-12750800-000                     | 663-12750800-000                     | 75        |
| 12 x 10                |             | 662-12751000-000                     | 663-12751000-000                     | 80        |
| 12 x 12                |             | 662-12751200-200                     | 663-12751200-200                     | 110       |
| 12 x 4                 |             | 662-13200400-000                     | 663-13200400-000                     | 51        |
| 12 x 6                 |             | 662-13200600-000                     | 663-13200600-000                     | 55        |
| 12 x 8                 | 13.16-13.56 | 662-13200800-000                     | 663-13200800-000                     | 75        |
| 12 x 10                |             | 662-13201000-000                     | 663-13201000-000                     | 80        |
| 12 x 12                |             | 662-13201200-200                     | 663-13201200-200                     | 110       |
| 12 x 4                 |             | 662-13820400-000                     | 663-13820400-000                     | 51        |
| 12 x 6                 | 12 00 14 00 | 662-13820600-000                     | 663-13820600-000                     | 55<br>75  |
| 12 x 8                 | 13.60-14.09 | 662-13820800-000<br>662-13821000-000 | 663-13820800-000                     | 75<br>80  |
| 12 x 10<br>12 x 12     |             | 662-13821200-200                     | 663-13821000-000<br>663-13821200-200 |           |
| 12 x 12<br>12 x 4      |             | 662-14250400-000                     | 663-14250400-000                     | 110<br>51 |
| 12 x 4<br>12 x 6       |             | 662-14250600-000                     | 663-14250600-000                     | 51        |
| 12 x 0<br>12 x 8       | 14.10-14.58 | 662-14250800-000                     | 663-14250800-000                     | 75        |
| 12 x 10                | 14.10-14.50 | 662-14251000-000                     | 663-14251000-000                     | 80        |
| 12 x 10                |             | 662-14251200-200                     | 663-14251200-200                     | 110       |
| 14 x 4                 |             | 662-15300400-000                     | 663-15300400-000                     | 72        |
| 14 x 6                 |             | 662-15300600-000                     | 663-15300600-000                     | 76        |
| 14 x 8                 | 15.30-15.80 | 662-15300800-000                     | 663-15300800-000                     | 95        |
| 14 x 10                |             | 662-15301000-000                     | 663-15301000-000                     | 102       |
| 14 x 12                |             | 662-15301200-000                     | 663-15301200-000                     | 135       |
| 14 x 4                 |             | 662-16000400-000                     | 663-16000400-000                     | 72        |
| 14 x 6                 |             | 662-16000600-000                     | 663-16000600-000                     | 76        |
| 14 x 8                 | 15.80-16.30 | 662-16000800-000                     | 663-16000800-000                     | 95        |
| 14 x 10                |             | 662-16001000-000                     | 663-16001000-000                     | 102       |
| 14 x 12                |             | 662-16001200-000                     | 663-16001200-000                     | 135       |
| 14 x 4                 |             | 662-16400400-000                     | 663-16400400-000                     | 72        |
| 14 x 6                 |             | 662-16400600-000                     | 663-16400600-000                     | 76        |
| 14 x 8                 | 16.40-16.80 | 662-16400800-000                     | 663-16400800-000                     | 95        |
| 14 x 10                |             | 662-16401000-000                     | 663-16401000-000                     | 102       |
| 14 x 12                |             | 662-16401200-000                     | 663-16401200-000                     | 135       |
| 16 x 4                 |             | 662-17400400-000                     | 663-17400400-000                     | 77        |
| 16 x 6                 | 47 40 47 00 | 662-17400600-000                     | 663-17400600-000                     | 82        |
| 16 x 8                 | 17.40-17.80 | 662-17400800-000                     | 663-17400800-000                     | 103       |
| 16 x 10<br>16 x 12     |             | 662-17401000-000<br>662-17401200-000 | 663-17401000-000<br>663-17401200-000 | 108       |
| 16 x 12<br>16-18 x 4   |             | 662-17401200-000                     | 663-17401200-000                     | 145<br>77 |
| 16-18 x 4<br>16-18 x 6 |             | 662-18700400-000                     | 663-18700400-000                     | 82        |
| 16-18 x 8              | 18.60-19.20 | 662-18700800-000                     | 663-18700800-000                     | 103       |
| 16-18 x 10             | 10.00-19.20 | 662-18701000-000                     | 663-18701000-000                     | 103       |
| 16-18 x 12             |             | 662-18701200-000                     | 663-18701200-000                     | 145       |
| 18-20 x 4              |             | 662-19500400-000                     | 663-19500400-000                     | 78        |
| 18-20 x 6              |             | 662-19500600-000                     | 663-19500600-000                     | 82        |
| 18-20 x 8              | 19.50-20.10 | 662-19500800-000                     | 663-19500800-000                     | 105       |
| 18-20 x 10             |             | 662-19501000-000                     | 663-19501000-000                     | 111       |
| 18-20 x 12             |             | 662-19501200-000                     | 663-19501200-000                     | 147       |
| 18-20 x 4              |             | 662-20900400-000                     | 663-20900400-000                     | 78        |
| 18-20 x 6              |             | 662-20900600-000                     | 663-20900600-000                     | 82        |
| 18-20 x 8              | 20.90-21.59 | 662-20900800-000                     | 663-20900800-000                     | 105       |
| 18-20 x 10             |             | 662-20901000-000                     | 663-20901000-000                     | 111       |
| 18-20 x 12             |             | 662-20901200-000                     | 663-20901200-000                     | 147       |
|                        |             |                                      |                                      |           |



# 662 - Carbon Flange Tapping Sleeve 663 - Stainless Steel Flange Tapping Sleeve Smith-Blair Stainless Steel Body and Neck ANSI/NSF® 61 Listed



| Nominal Size of<br>Pipe x Flanged<br>Outlet | O. D.<br>Range<br>(Inches) | 662<br>Flexi-Coat®<br>Epoxy Coated<br>Carbon Steel Flange | 663<br>Stainless<br>Steel Flange | Approx.<br>Weight<br>Each<br>Pounds |
|---------------------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------|-------------------------------------|
|                                             |                            | Catalog Number                                            | Catalog Number                   |                                     |
| 20 x 4                                      |                            | 662-21600400-000                                          | 663-21600400-000                 | 88                                  |
| 20 x 6                                      |                            | 662-21600600-000                                          | 663-21600600-000                 | 94                                  |
| 20 x 8                                      | 21.60-22.40                | 662-21600800-000                                          | 663-21600800-000                 | 118                                 |
| 20 x 10                                     |                            | 662-21601000-000                                          | 663-21601000-000                 | 124                                 |
| 20 x 12                                     |                            | 662-21601200-000                                          | 663-21601200-000                 | 160                                 |
| 20-24 x 4                                   |                            | 662-23500400-000                                          | 663-23500400-000                 | 95                                  |
| 20-24 x 6                                   |                            | 662-23500600-000                                          | 663-23500600-000                 | 100                                 |
| 20-24 x 8                                   | 23.50-24.20                | 662-23500800-000                                          | 663-23500800-000                 | 122                                 |
| 20-24 x 10                                  |                            | 662-23501000-000                                          | 663-23501000-000                 | 130                                 |
| 20-24 x 12                                  |                            | 662-23501200-000                                          | 663-23501200-000                 | 169                                 |
| 24 x 4                                      |                            | 662-25800400-000                                          | 663-25800400-000                 | 95                                  |
| 24 x 6                                      |                            | 662-25800600-000                                          | 663-25800600-000                 | 100                                 |
| 24 x 8                                      | 25.80-26.60                | 662-25800800-000                                          | 663-25800800-000                 | 122                                 |
| 24 x 10                                     |                            | 662-25801000-000                                          | 663-25801000-000                 | 130                                 |
| 24 x 12                                     |                            | 662-25801200-000                                          | 663-25801200-000                 | 170                                 |
| 24 x 4                                      |                            | 662-28300400-000                                          | 663-28300400-000                 | 103                                 |
| 24 x 6                                      |                            | 662-28300600-000                                          | 663-28300600-000                 | 109                                 |
| 24 x 8                                      | 28.30-29.00                | 662-28300800-000                                          | 663-28300800-000                 | 133                                 |
| 24 x 10                                     |                            | 662-28301000-000                                          | 663-28301000-000                 | 141                                 |
| 24 x 12                                     |                            | 662-28301200-000                                          | 663-28301200-000                 | 185                                 |



MJ Series Tapping Sleeves with Mechanical Joint Outlets





665 Tapping Sleeve



623 Fabricated Mechanical Joint

622 Tapping Sleeve

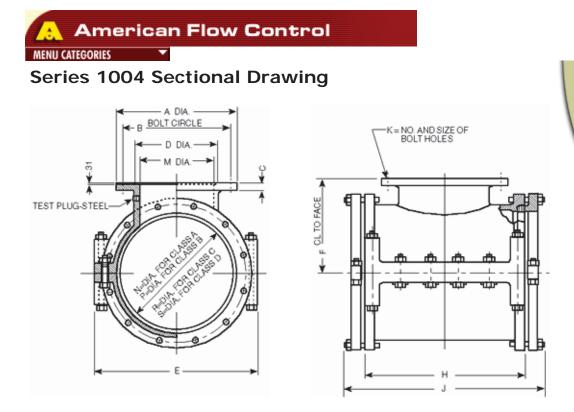
Smith-Blair, Inc. Mechanical Joint Outlet is available on all Smith-Blair<sup>®</sup> Carbon Steel and Stainless Steel Tapping Sleeve product lines.

The MJ Outlet allows the user to tap pipe, utilizing a standard MJ x MJ valve in lieu of a specialty tapping valve. This outlet allows the user to combine valve inventory to a single valve, reduce installation time and save money.

The heavy mechanical joint flange is fixed in place to make installation easier, while reducing the chance of injuries during the tapping operation.

The Smith-Blair<sup>®</sup> Mechanical Joint Outlet product extension has all the quality features expected in our full line of Tapping Sleeve Products.

| To order, modify the standard Smith-Blair®<br>Tapping Sleeve catalog number as shown<br>below |                           |  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| Examp                                                                                         | le:                       |  |  |  |
| 622 6" x 4" Tapping Sleeve w/alloy bolts and nuts                                             |                           |  |  |  |
| Standard Catalog Number   MJ Outlet Number                                                    |                           |  |  |  |
| 622-069004 <u>00</u> -003                                                                     | 622-069004 <u>MJ</u> -003 |  |  |  |
|                                                                                               |                           |  |  |  |


For information on sizes and prices, please contact Smith-Blair, Inc. Ph: (870)773-5127 or (800)643-9705

Note: For the flange dimension, please see the specific tapping sleeve specification.

## 626 Weld-On Outlet



626 Carbon Steel "Weld-On" fittings are provided with several configurations of outlets for use on steel pipe. The 626 is available in stainless steel.





> Tapping
 Sleeves Features
 > Tapping
 Sleeves
 Specifications
 > Series 1004
 Sectional Drawing
 > Series 2800
 Sectional Drawing

| Parts              |                                                    |  |  |  |  |  |  |
|--------------------|----------------------------------------------------|--|--|--|--|--|--|
| Part Name          | Material                                           |  |  |  |  |  |  |
| Sleeve Outlet Half | Ductile Iron                                       |  |  |  |  |  |  |
| Sleeve Plain Half  | Ductile Iron                                       |  |  |  |  |  |  |
| Split Gland        | Ductile Iron                                       |  |  |  |  |  |  |
| Side Flange Gasket | Rubber                                             |  |  |  |  |  |  |
| End Flange Gasket  | Rubber                                             |  |  |  |  |  |  |
| Bolts and Nuts     | High-Strength,<br>Low-Alloy Steel<br>Per AWWA C111 |  |  |  |  |  |  |

| Size    | A     | E     | С     | F  | D (outside | Pipe Dia.) |
|---------|-------|-------|-------|----|------------|------------|
|         |       |       |       |    | Class A    | Class B    |
| 14 x 4  | 5.02  | 23    | 13.75 | 18 | 15.3       | 15.3       |
| 14 x 6  | 7.02  | 23    | 13.75 | 18 | 15.3       | 15.3       |
| 14 x 8  | 9.02  | 23    | 13.75 | 18 | 15.3       | 15.3       |
| 14 x 10 | 11.02 | 23    | 14.25 | 24 | 15.3       | 15.3       |
| 14 x 12 | 13.02 | 23    | 14.25 | 24 | 15.3       | 15.3       |
| 14 x 14 | 15    | 23    | 15    | 24 | 15.3       | 15.3       |
| 16 x 14 | 15    | 25.74 | 15.5  | 24 | 17.4       | 17.4       |
| 16 x 16 | 17.02 | 25.74 | 15.5  | 30 | 17.4       | 17.4       |
|         |       |       |       |    |            |            |

5.02

7.02

9.02

11.02

13.02

15

17

19.13

5.02

7.02

9.02

11.02

13.02

15

17

21

5.02

7.02

28

28

28

28

28

28

28

28

30.24

30.24

30.24

30.24

30.24

30.24

30.24

30.24

35.5

35.5

18 x 4

18 x 6

18 x 8

18 x 10

18 x 12

18 x 14

18 x 16

18 x 18

20 x 4

20 x 6 20 x 8

20 x 10

20 x 12

20 x 14

20 x 16

20 x 20

24 x 4

24 x 6

36 x 20

36 x 24

21

25

| CO    |    |      |      | Pa |
|-------|----|------|------|----|
| 16.25 | 18 | 19.5 | 19.5 |    |
| 16.25 | 18 | 19.5 | 19.5 |    |
| 16.25 | 18 | 19.5 | 19.5 |    |
| 16.25 | 24 | 19.5 | 19.5 |    |
| 16.75 | 24 | 19.5 | 19.5 |    |
| 16.75 | 24 | 19.5 | 19.5 |    |
| 16.75 | 30 | 19.5 | 19.5 |    |
| 16.75 | 30 | 19.5 | 19.5 |    |
| 16.5  | 18 | 21.6 | 21.6 |    |
| 16.5  | 18 | 21.6 | 21.6 |    |
| 16.5  | 18 | 21.6 | 21.6 |    |
| 16.5  | 24 | 21.6 | 21.6 |    |
| 16.5  | 24 | 21.6 | 21.6 |    |
| 16.5  | 24 | 21.6 | 21.6 |    |
| 16.5  | 30 | 21.6 | 21.6 |    |
| 18    | 30 | 21.6 | 21.6 |    |
| 19.5  | 18 | 25.8 | 25.8 |    |

25.8

25.8

25.8

25.8

25.8

25.8

25.8

25.8

25.8

25.8

32

32

32

32

32

32

32

32

38.3

38.3

38.3

38.3 38.3

38.3

38.3

| 24 x 8  | 9.02  | 35.5  | 19.5  | 18 | 25.8  |
|---------|-------|-------|-------|----|-------|
| 24 x 10 | 11.02 | 35.5  | 19.5  | 24 | 25.8  |
| 24 x 12 | 13.02 | 35.5  | 19.5  | 24 | 25.8  |
| 24 x 14 | 15    | 35.5  | 19.5  | 24 | 25.8  |
| 24 x 16 | 17    | 35.5  | 20.5  | 30 | 25.8  |
| 24 x 18 | 19.12 | 35.5  | 20.5  | 30 | 25.8  |
| 24 x 20 | 21    | 35.5  | 20.5  | 30 | 25.8  |
| 24 x 24 | 25    | 35.5  | 20.5  | 36 | 25.8  |
| 30 x 6  | 7.02  | 43.37 | 23.25 | 24 | 31.74 |
| 30 x 8  | 9.02  | 43.37 | 23.25 | 24 | 31.74 |
| 30 x 10 | 11.02 | 43.37 | 23.25 | 24 | 31.74 |
| 30 x 12 | 13.02 | 43.37 | 23.35 | 24 | 31.74 |
| 30 x 16 | 17    | 43.37 | 23.75 | 36 | 31.74 |
| 30 x 18 | 19.12 | 43.37 | 23.75 | 36 | 31.74 |
| 30 x 20 | 21    | 43.37 | 23.75 | 36 | 31.74 |
| 30 x 24 | 25    | 43.37 | 23.75 | 36 | 31.74 |
| 36 x 6  | 7.02  | 49.75 | 26.5  | 24 | 37.96 |
| 36 x 8  | 9.02  | 49.75 | 26.5  | 24 | 37.96 |
| 36 x 10 | 11.02 | 49.75 | 26.5  | 24 | 37.96 |
| 36 x 12 | 13.02 | 49.75 | 27.25 | 24 | 37.96 |
| 36 x 16 | 17    | 49.75 | 27.25 | 30 | 37.96 |
|         |       |       |       |    |       |

19.5

18

Notes:

DIMENSION D IS OUTSIDE PIPE DIAMETERS SLEEVE WILL FIT. PIPE SIZE (CLASS A ON 24" AND SMALLER AND CLASS B ON LARGER THAN 24"). SLEEVE IS NOT A COMBINATION SLEEVE. YOU MUST MEASURE PIPE PRIOR TO PLACING ORDER.

27.25

27.25

36

36

37.96

37.96

49.75

49.75

|            |      |       |      |       |       |       |    |       |     | К        |       |       |      | Wt   |
|------------|------|-------|------|-------|-------|-------|----|-------|-----|----------|-------|-------|------|------|
| Size       | A    | В     | С    | D     | E     | F     | Н  | J     | No. | Size     | M     | N     | Р    | lbs. |
| 20 x<br>4  | 9    | 7.5   | 0.94 | 5.02  | 30.24 | 16.5  | 18 | 24.62 | 8   | 3/4      | 4.5   | 21.6  | 21.6 | 760  |
| 20 x<br>6  | 11   | 9.5   | 1    | 7.02  | 30.24 | 16.5  | 18 | 24.62 | 8   | 7/8      | 6.5   | 21.6  | 21.6 | 765  |
| 20 x<br>8  | 13.5 | 11.75 | 1.13 | 9.02  | 30.24 | 16.5  | 18 | 24.62 | 8   | 7/8      | 8.5   | 21.6  | 21.6 | 775  |
| 20 x<br>10 | 16   | 14.25 | 1.19 | 11.02 | 30.24 | 16.5  | 24 | 30.62 | 12  | 1        | 10.5  | 21.6  | 21.6 | 930  |
| 20 x<br>12 | 19   | 17    | 1.25 | 13.02 | 30.24 | 16.5  | 24 | 30.62 | 12  | 1        | 12.5  | 21.6  | 21.6 | 950  |
| 20 x<br>14 | 21   | 18.75 | 1.38 | 15    | 30.24 | 16.5  | 24 | 30.62 | 12  | 1<br>1/8 | 13.5  | 21.6  | 21.6 | 965  |
| 20 x<br>16 | 23.5 | 21.25 | 1.44 | 17    | 30.24 | 16.5  | 30 | 36.62 | 16  | 1<br>1/8 | 16.5  | 21.6  | 21.6 | 1130 |
| 20 x<br>20 | 27.5 | 25    | 1.69 | 21    | 30.24 | 18    | 30 | 36.62 | 20  | 1<br>1/4 | 20.25 | 21.6  | 21.6 | 1175 |
| 24 x<br>4  | 9    | 7.5   | 0.94 | 5.02  | 35.5  | 19.5  | 18 | 24.37 | 8   | 3/4      | 4.5   | 25.8  | 25.8 | 985  |
| 24 x<br>6  | 11   | 9.5   | 1    | 7.02  | 35.5  | 19.5  | 18 | 24.37 | 8   | 7/8      | 6.5   | 25.8  | 25.8 | 990  |
| 24 x<br>8  | 13.5 | 11.75 | 1.13 | 9.02  | 35.5  | 19.5  | 18 | 24.37 | 8   | 7/8      | 8.5   | 25.8  | 25.8 | 995  |
| 24 x<br>10 | 16   | 14.25 | 1.19 | 11.02 | 35.5  | 19.5  | 24 | 30.37 | 12  | 1        | 10.5  | 25.8  | 25.8 | 1300 |
| 24 x<br>12 | 19   | 17    | 1.25 | 13.02 | 35.5  | 19.5  | 24 | 30.37 | 12  | 1        | 12.5  | 25.8  | 25.8 | 1410 |
| 24 x<br>14 | 21   | 18.75 | 1.38 | 15    | 35.5  | 19.5  | 24 | 30.37 | 12  | 1<br>1/8 | 14.5  | 25.8  | 25.8 | 1415 |
| 24 x<br>16 | 23.5 | 21.25 | 1.44 | 17    | 35.5  | 20.5  | 30 | 36.37 | 16  | 1<br>1/8 | 16.5  | 25.8  | 25.8 | 1420 |
| 24 x<br>18 | 25   | 22.75 | 1.56 | 19.12 | 35.5  | 20.5  | 30 | 36.37 | 16  | 1<br>1/4 | 18.25 | 25.8  | 25.8 | 1440 |
| 24 x<br>20 | 27.5 | 25    | 1.69 | 21    | 35.5  | 20.5  | 30 | 36.37 | 20  | 1<br>1/4 | 20.25 | 25.8  | 25.8 | 1470 |
| 24 x<br>24 | 32   | 29.5  | 1.88 | 25    | 35.5  | 20.5  | 36 | 42.37 | 20  | 1<br>3/8 | 24.25 | 25.8  | 25.8 | 1730 |
| 30 x<br>6  | 11   | 9.5   | 1    | 7.02  | 43.37 | 23.25 | 24 | 32.12 | 8   | 7/8      | 6.5   | 31.74 | 32   | 1895 |
| 30 x<br>8  | 13.5 | 11.75 | 1.13 | 9.02  | 43.37 | 23.25 | 24 | 32.12 | 8   | 7/8      | 8.5   | 31.74 | 32   | 1910 |
| 30 x<br>10 | 16   | 14.25 | 1.19 | 11.02 | 43.37 | 23.25 | 24 | 32.12 | 12  | 1        | 10.5  | 31.74 | 32   | 2210 |
| 30 x<br>12 | 19   | 17    | 1.25 | 13.02 | 43.37 | 23.35 | 24 | 32.12 | 12  | 1        | 12.5  | 31.74 | 32   | 2225 |

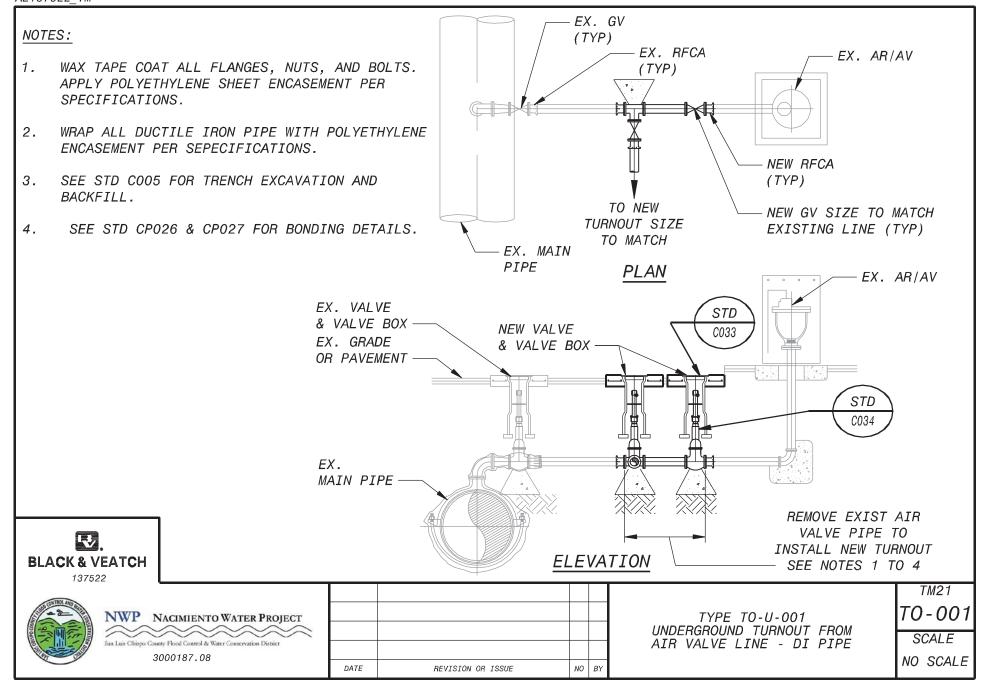
AFC-sleeves-sectional-1004-dinches

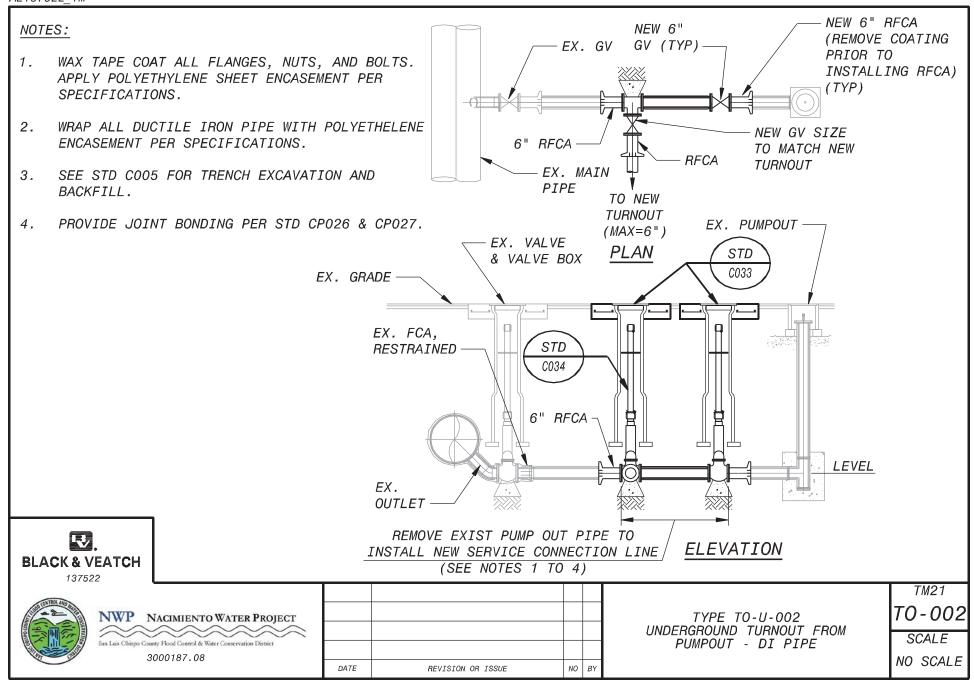
| 30 x<br>16 | 23.5 | 21.25 | 1.44 | 17    | 43.37 | 23.75 | 36 | 44.12 | 16 | 1<br>1/8 | 16.5  | 31.74 | 32   | 2600 |
|------------|------|-------|------|-------|-------|-------|----|-------|----|----------|-------|-------|------|------|
| 30 x<br>18 | 25   | 22.75 | 1.56 | 19.12 | 43.37 | 23.75 | 36 | 44.12 | 16 | 1<br>1/4 | 18.25 | 31.74 | 32   |      |
| 30 x<br>20 | 27.5 | 25    | 1.69 | 21    | 43.37 | 23.75 | 36 | 44.12 | 20 | 1<br>1/4 | 20.25 | 31.74 | 32   |      |
| 30 x<br>24 | 32   | 29.5  | 1.88 | 25    | 43.37 | 23.75 | 36 | 44.12 | 20 | 1<br>3/8 | 24.25 | 31.74 | 32   | 2890 |
| 36 x<br>6  | 11   | 9.5   | 1    | 7.02  | 49.75 | 26.5  | 24 | 32    | 8  | 7/8      | 6.5   | 37.96 | 38.3 | 2222 |
| 36 x<br>8  | 13.5 | 11.75 | 1.13 | 9.02  | 49.75 | 26.5  | 24 | 32    | 8  | 7/8      | 8.5   | 37.96 | 38.3 | 2232 |
| 36 x<br>10 | 16   | 14.25 | 1.19 | 11.02 | 49.75 | 26.5  | 24 | 32    | 12 | 1        | 10.5  | 37.96 | 38.3 |      |
| 36 x<br>12 | 19   | 17    | 1.25 | 13.02 | 49.75 | 26.5  | 24 | 32    | 12 | 1        | 12.5  | 37.96 | 38.3 |      |
| 36 x<br>16 | 23.5 | 21.25 | 1.44 | 17    | 49.75 | 27.25 | 30 | 38    | 16 | 1<br>1/8 | 16.5  | 37.96 | 38.3 |      |
| 36 x<br>20 | 27.5 | 25    | 1.69 | 21    | 49.75 | 27.25 | 36 | 44    | 20 | 1<br>1/4 | 20.25 | 37.96 | 38.3 | 3055 |
| 36 x<br>24 | 32   | 29.5  | 1.88 | 25    | 49.75 | 27.25 | 36 | 44    | 20 | 1<br>3/8 | 24.25 | 37.96 | 38.3 | 3075 |

Notes:

.

N AND P DIMENSIONS ARE PIPE OUTSIDE DIAMETERS SLEEVE WILL FIT. SLEEVE IS NOT A COMBINATION SLEEVE. PIPE SIZE IS REQUIRED FOR EACH SLEEVE. RATED FOR 250 P.S.I.G. WORKING PRESSURE.

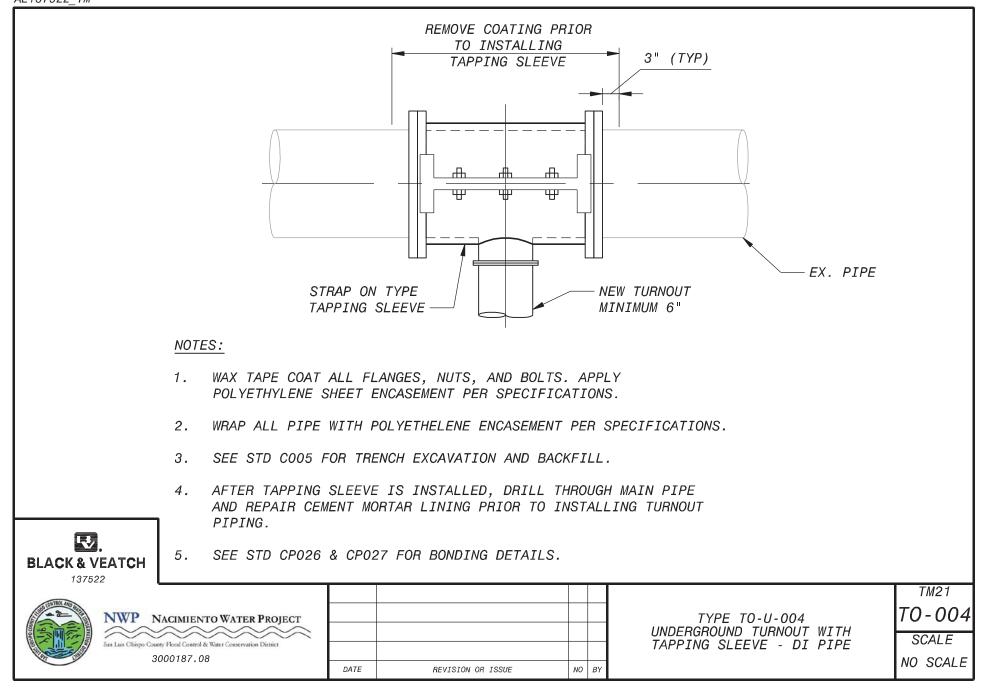

> © 1995 – 2010, American Cast Iron Pipe Company Customer Service: 1-800-326-8051 (Birmingham) 1-888-266-3686 (Waterous) Contact Us

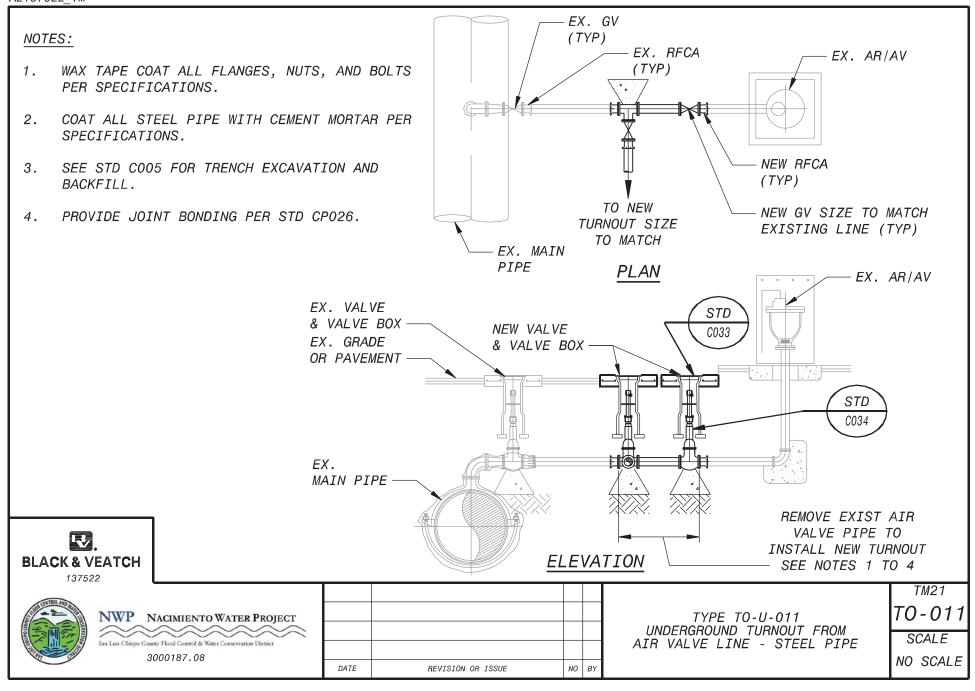

## ATTACHMENT TM21-2 TYPICAL TURNOUT CONFIGURATIONS

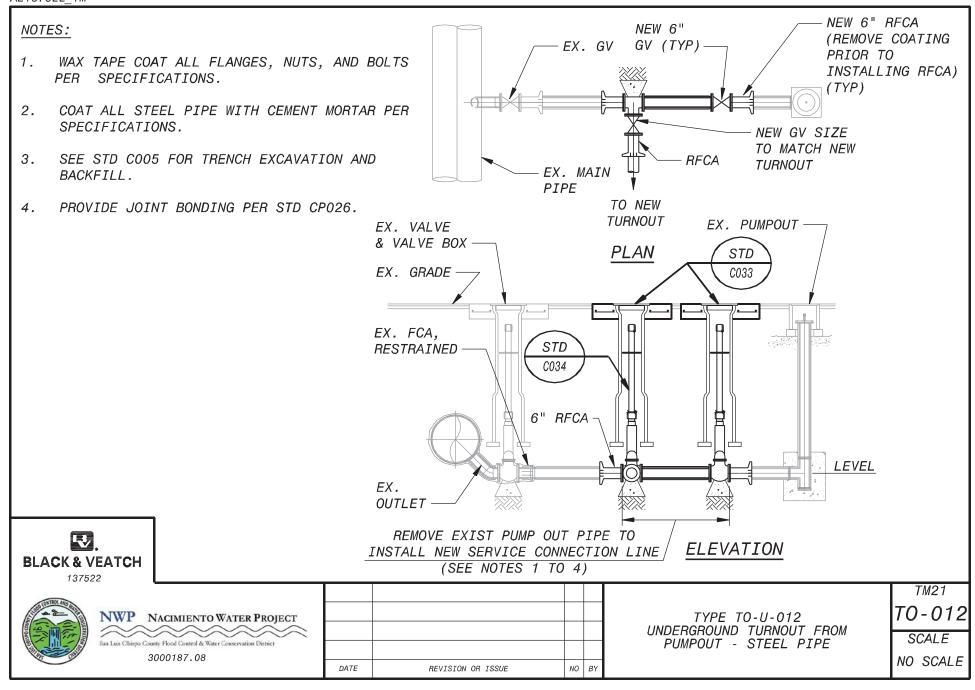
## List of Turnout Configurations and Drawings


| Turnout<br>Designation | Turnout Description                                      | Drawing Number |
|------------------------|----------------------------------------------------------|----------------|
| TO-U-001               | Underground Turnout from Air Valve Line – DI Pipe        | TM21-TO-001    |
| TO-U-002               | Underground Turnout from Pumpout – DI Pipe               | TM21-TO-002    |
| TO-U-003               | Underground Turnout from Cut-in Tee – DI Pipe            | TM21-TO-003    |
| TO-U-004               | Underground Turnout from Tapping Sleeve – DI<br>Pipe     | TM21-TO-004    |
| TO-U-011               | Underground Turnout from Air Valve Line – Steel<br>Pipe  | TM21-TO-011    |
| TO-U-012               | Underground Turnout from Pumpout – Steel Pipe            | TM21-TO-012    |
| TO-U-013               | Underground Turnout from Cut-in Tee – Steel Pipe         | TM21-TO-013    |
| TO-U-014               | Underground Turnout from Tapping Sleeve – Steel Pipe     | TM21-TO-014    |
| TO-A-021               | Above Grade Turnout from Air Valve Lines – DI<br>Pipe    | TM21-TO-021    |
| TO-A-023               | Above Grade Turnout from Cut-in Tee – DI Pipe            | TM21-TO-023    |
| TO-A-024               | Above Grade Turnout from Tapping Sleeve – DI<br>Pipe     | TM21-TO-024    |
| TO-A-031               | Above Grade Turnout from Air Valve Lines – Steel<br>Pipe | TM21-TO-031    |
| TO-A-033               | Above Grade Turnout from Cut-in Tee – Steel Pipe         | TM21-TO-033    |
| TO-A-034               | Above Grade Turnout from Tapping Sleeve – Steel Pipe     | TM21-TO-034    |
| TO-A                   | Above Grade Turnout – Typical Layout                     | TM21-TO-041    |
| TO-U                   | Underground Turnout – Typical Layout Plans               | TM21-TO-051    |
| TO-U                   | Underground Turnout – Typical Layout Sections            | TM21-TO-052    |
| -                      | Trench Bedding                                           | STD-C005       |
| -                      | Buried Valve Operator                                    | STD-C033       |
| -                      | Extension Stem                                           | STD-C034       |
| -                      | Rubber Gasket Joint for Steel Pipe                       | STD-M052       |
| -                      | Jumper Rod for Steel Pipe (Alternative to Bonding Clips) | STD-M052A      |
| -                      | Exothermal Weld Procedure                                | STD-CP003      |
| -                      | Test Lead to Steel Pipe                                  | STD-CP004      |
| -                      | Test Lead to DI Pipe                                     | STD-CP005      |
| -                      | Joint Bonding                                            | STD-CP026      |
| -                      | DI Pipe Joint Bonding                                    | STD-CP027      |

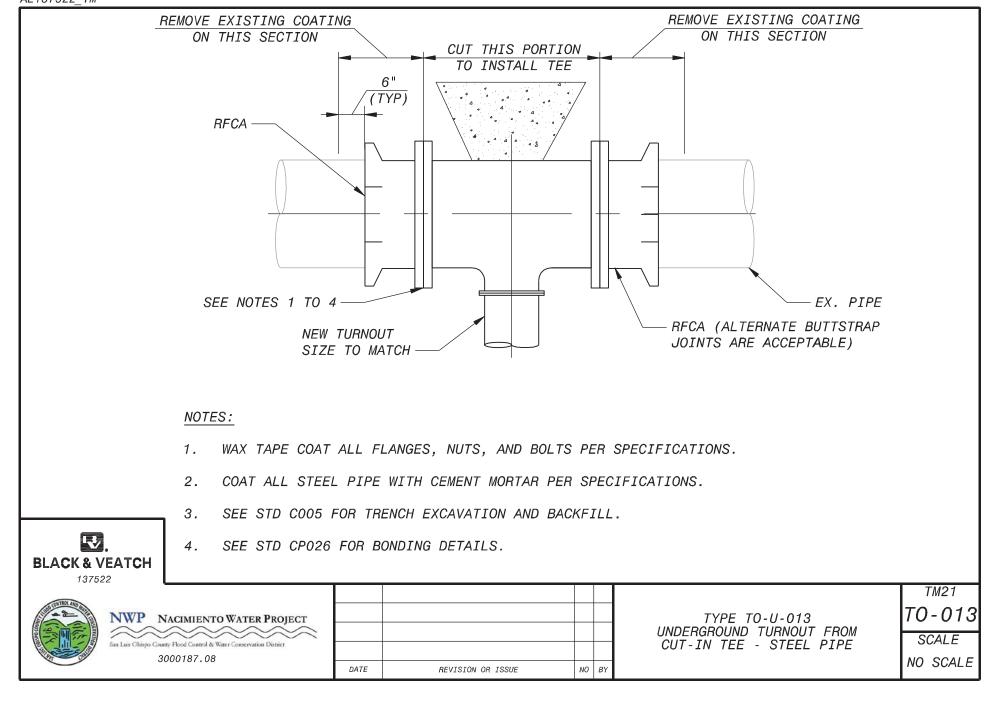
PLOTTED: VIZ28550, 10/13/2010 7:19:14 AM SAVED: VIZ28550, 10/13/2010 7:37:18 AM CYGNET ID: FAL137522\_TM AL137522\_TM

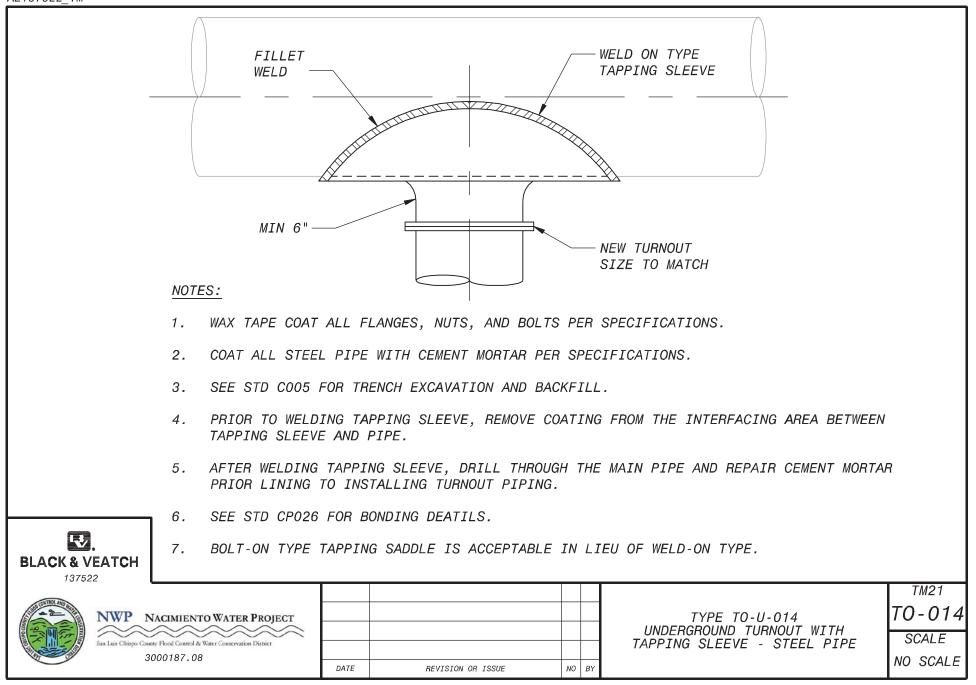




PLOTTED: VIZ28550, 10/12/2010 1:41:59 PM SAVED: VIZ28550, 10/13/2010 10:17:17 AM CYGNET ID: FAL137522\_TM AL137522\_TM



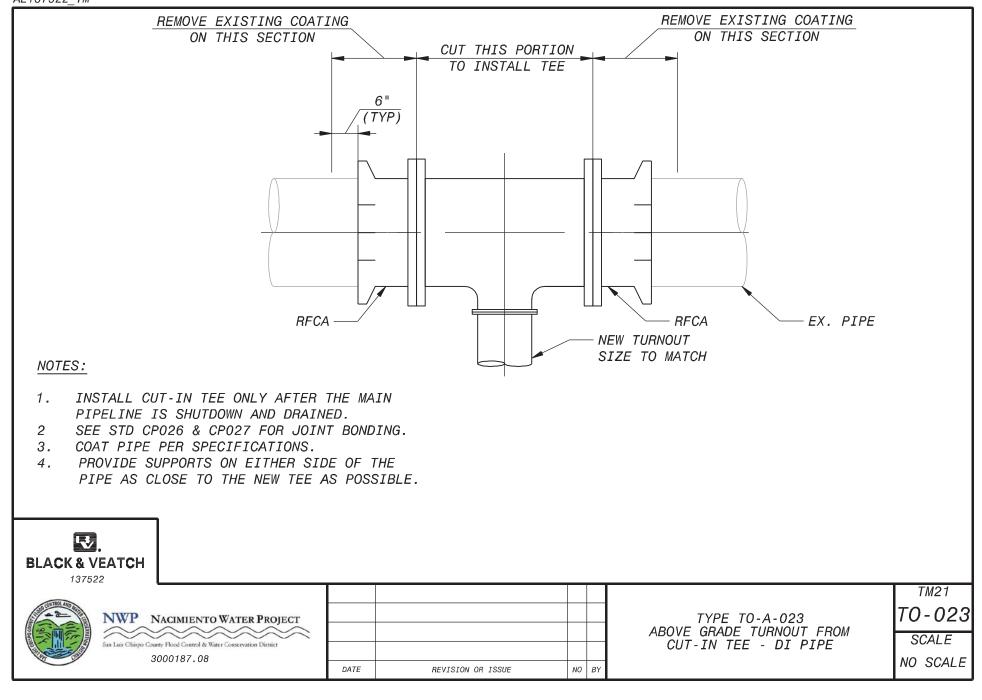

PLOTTED: VIZ28550, 10/13/2010 7:43:25 AM SAVED: VIZ28550, 10/13/2010 10:22:29 AM CYGNET ID: FAL137522\_TM AL137522\_TM



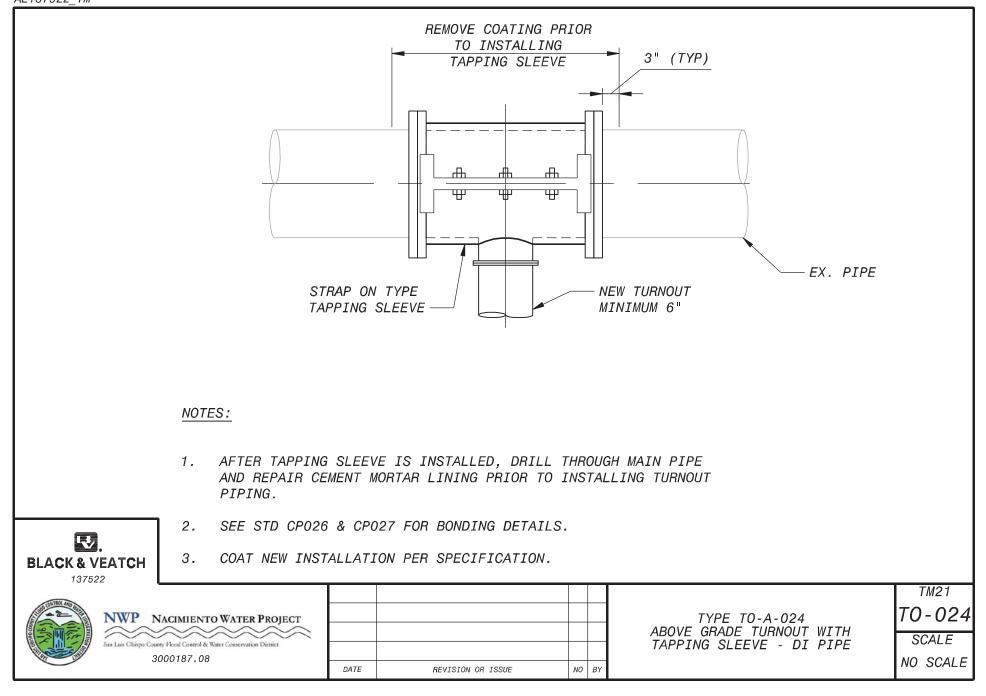




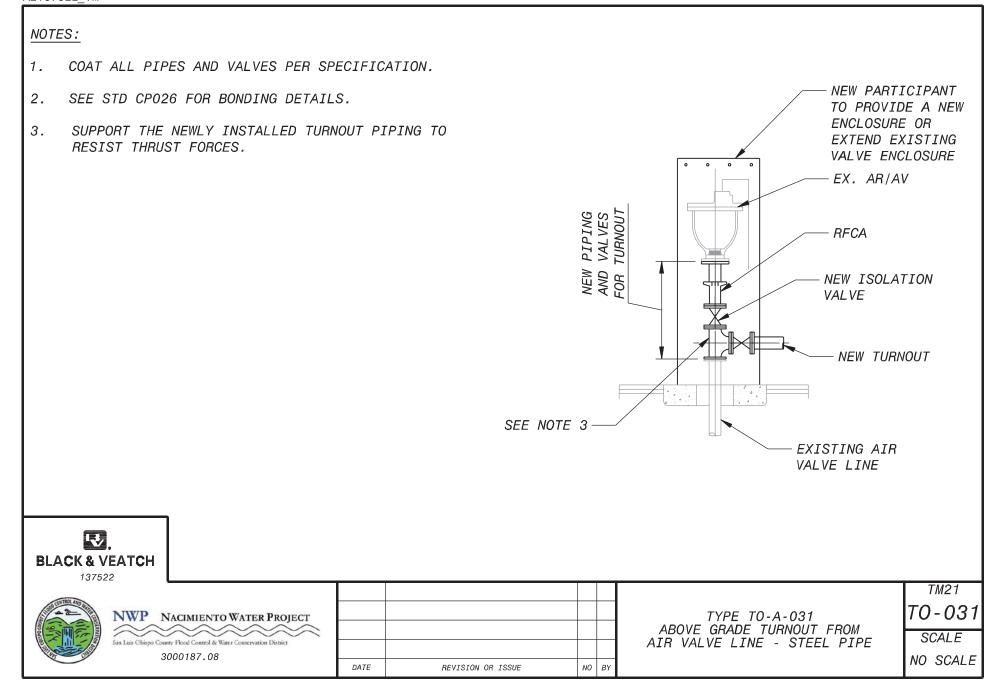

PLOTTED: VIZ28550, 10/13/2010 7:47:23 AM SAVED: VIZ28550, 10/13/2010 10:25:15 AM CYGNET ID: FAL137522\_TM AL137522\_TM



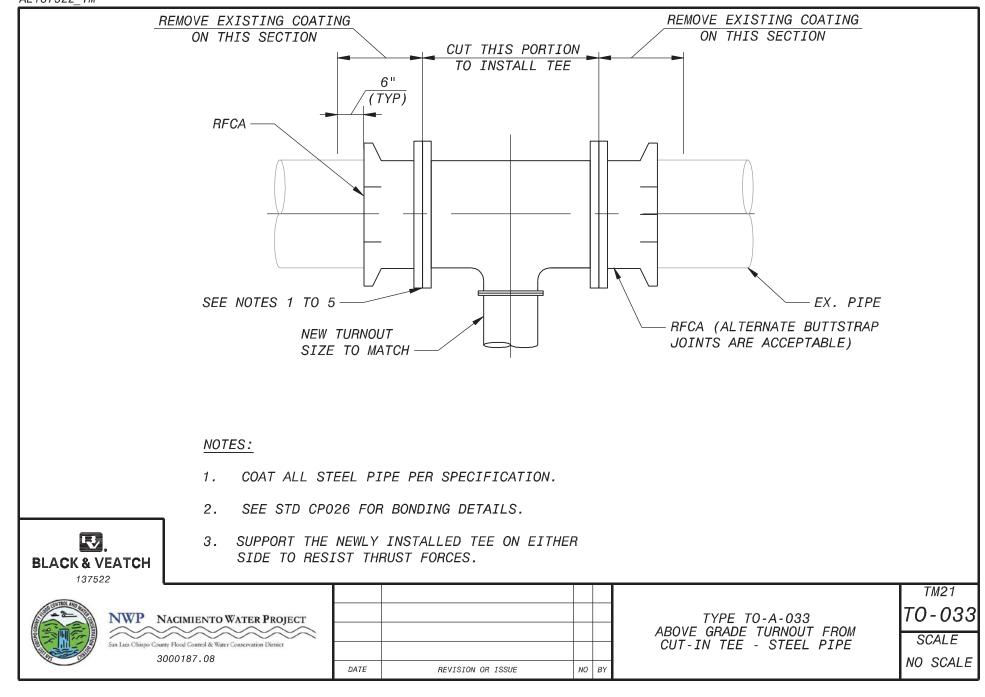




PLOTTED: SAN43843, 3/7/2011 2:40:08 PM SAVED: JAY37537, 3/8/2011 10:37:23 AM CYGNET ID: FAL137522\_TM AL137522\_TM

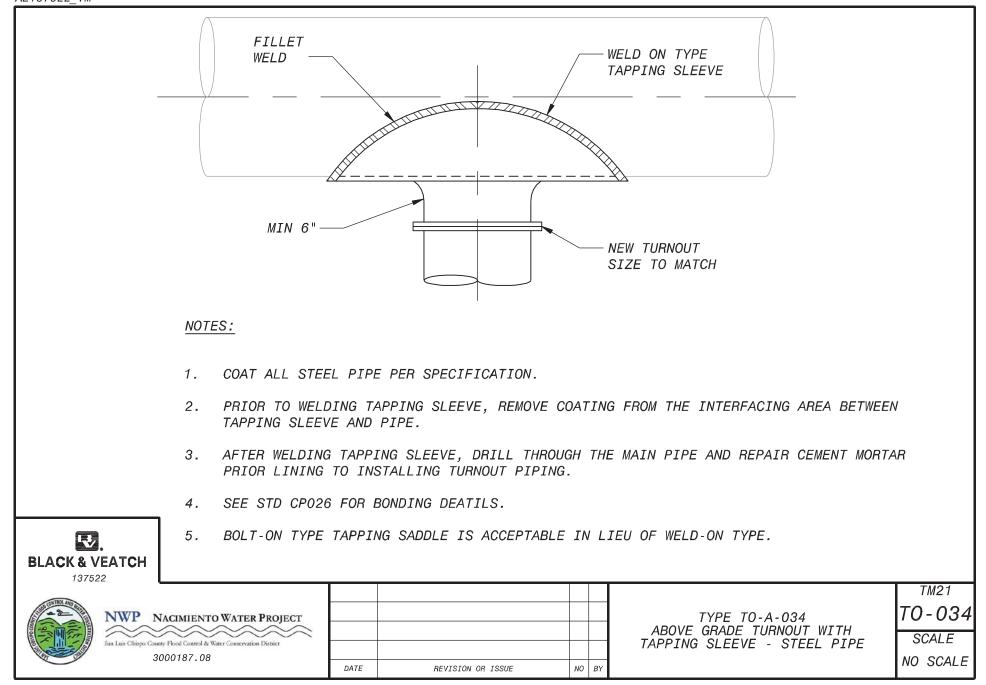
#### NOTES: NEW PARTICIPANT 1. COAT ALL PIPES AND VALVES PER SPECIFICATION. TO PROVIDE A NEW ENCLOSURE OR 2. SEE STD CP026 & CP027 FOR BONDING DETAILS. EXTEND EXISTING VALVE ENCLOSURE 3. SUPPORT THE NEWLY INSTALLED TURNOUT PIPING TO EX. AR/AV RESIST THRUST FORCES. NEW PIPING AND VALVES FOR TURNOUT **RFCA** NEW ISOLATION VALVE NEW TURNOUT 1.1 SEE NOTE 3 EXISTING AIR VALVE LINE R. **BLACK & VEATCH** 137522 TM21 TO-021 NWP NACIMIENTO WATER PROJECT *TYPE TO-A-021* ABOVE GRADE TURNOUT FROM SCALE AIR VALVE LINE - DI PIPE San Luis Obispo County Flood Control & Water Conservation District 3000187.08 NO SCALE DATE NO BY REVISION OR ISSUE

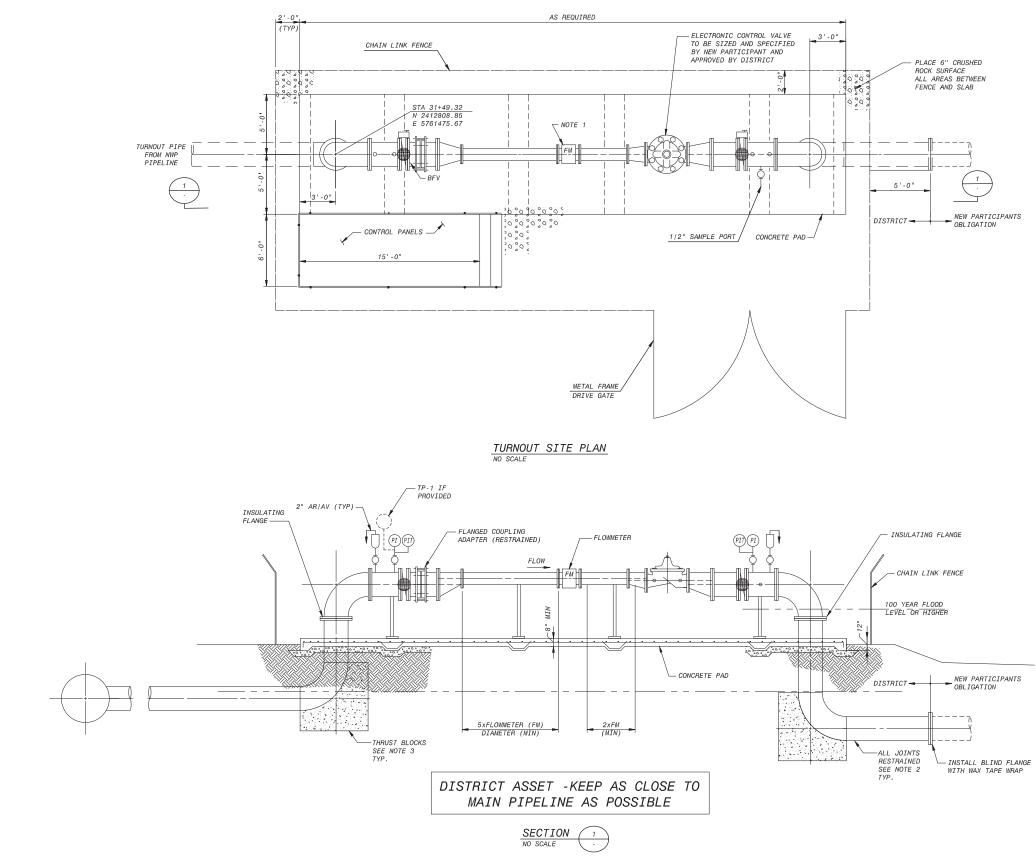

PLOTTED: VIZ28550, 10/12/2010 2:13:03 PM SAVED: VIZ28550, 10/13/2010 11:12:11 AM CYGNET ID: FAL137522\_TM AL137522\_TM




PLOTTED: VIZ28550, 10/13/2010 8:15:04 AM SAVED: VIZ28550, 10/13/2010 11:15:31 AM CYGNET ID: FAL137522\_TM AL137522\_TM




PLOTTED: SAN43843, 3/7/2011 2:43:46 PM SAVED: JAY37537, 3/8/2011 10:35:33 AM CYGNET ID: FAL137522\_TM AL137522\_TM




PLOTTED: VIZ28550, 10/13/2010 11:21:33 AM SAVED: VIZ28550, 10/13/2010 11:21:38 AM CYGNET ID: FAL137522\_TM AL137522\_TM



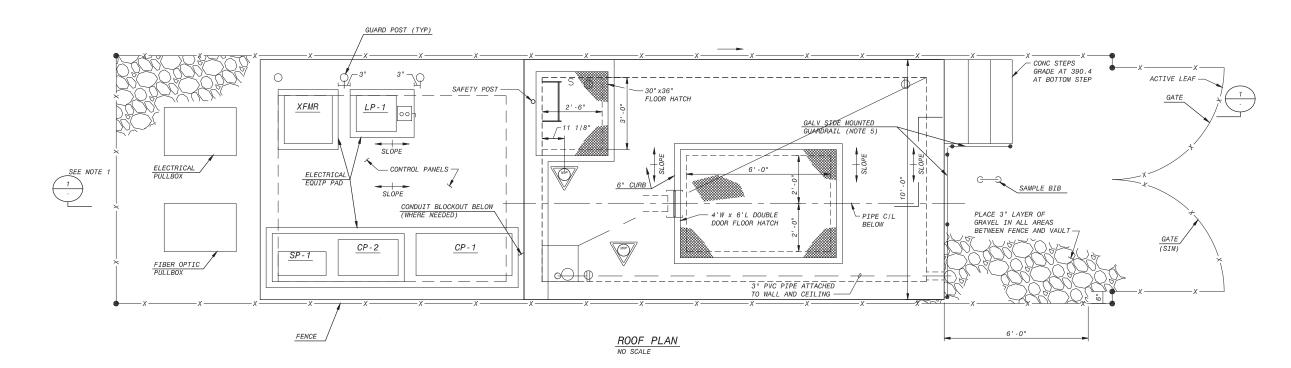
PLOTTED: VIZ28550, 10/13/2010 8:24:09 AM SAVED: VIZ28550, 10/13/2010 11:22:48 AM CYGNET ID: FAL137522\_TM AL137522\_TM

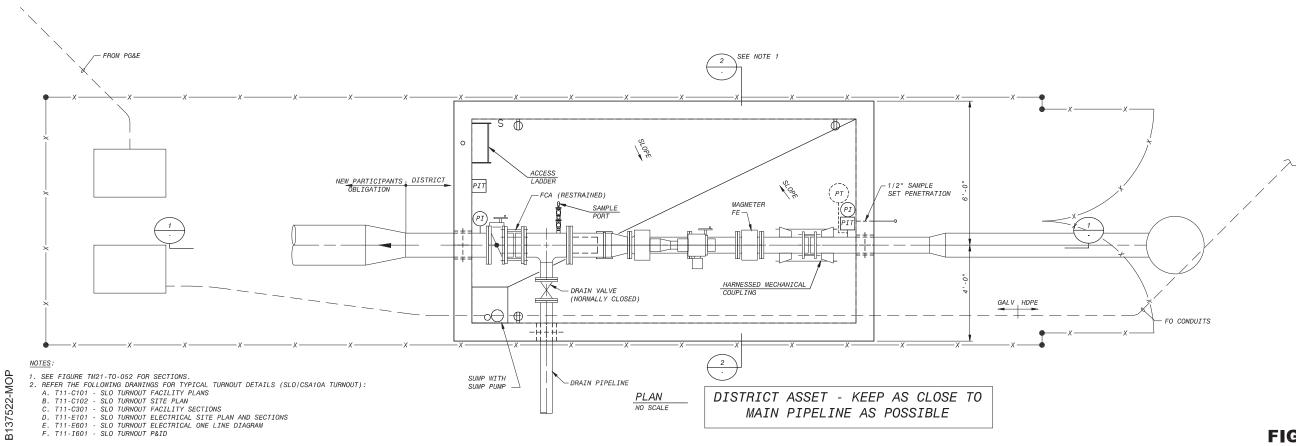




- NOTES:
- 1. FLOWMETER TO BE SIZED FOR A VELOCITY RANGE 1 TO 18 FT/S.
- 2. STEEL PIPE JOINTS SHALL BE WELDED JOINTS AND DUCTILE IRON PIPE JOINTS SHALL BE FLANGED.
- 3. DESIGN AND INSTALL THRUST BLOCKS ON PIPELINE BENDS/ELBOWS AS NEEDED FOR PIPELINE DESIGN.
- 4. FOR TYPICAL ABOVE GRADE TURNOUT DETAILS REFER THE FOLLOWING DRAWINGS (USED FOR PASO ROBLES TURNOUT):
- A. T2-C101: PASO ROBLES TURNOUT SITE PLAN AND SECTION B. T2-E101: PASO ROBLES TURNOUT ELECTRICAL PLAN AND SECTIONS C. T2-E301: PASO ROBLES TURNOUT ELECTRICAL ONE LINE DIAGRAM D. T2-I601: PASO ROBLES TURNOUT P&ID

FB137522-MOP B137522-MOP





NWP NACIMIENTO WATER PROJECT

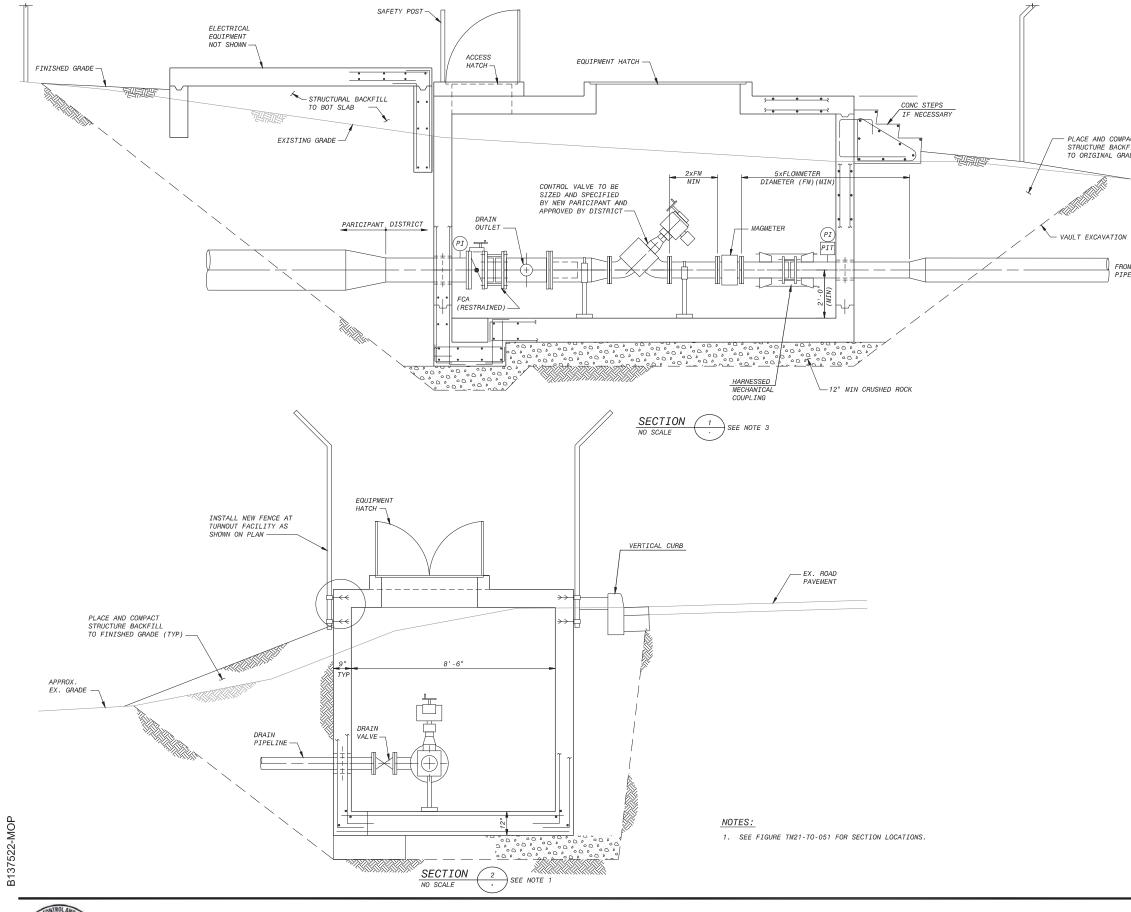
San Luis Obispo County Flood Control & Water Conservation District

## **TYPE TO-A ABOVE GRADE TURNOUT TYPICAL LAYOUT**

#### FIGURE TM21-TO-041








NWP NACIMIENTO WATER PROJECT

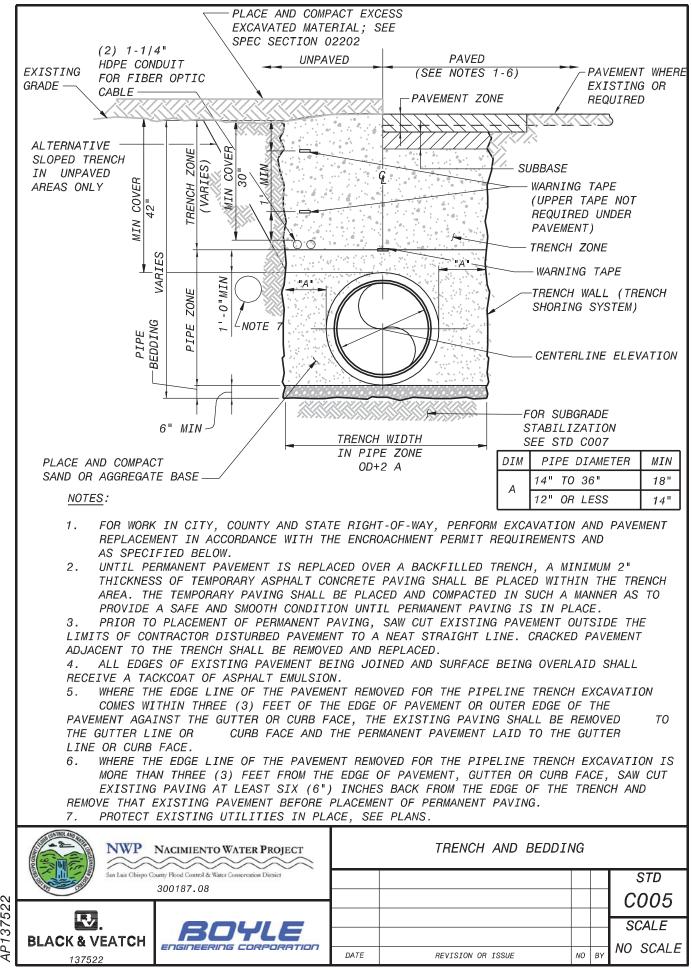
San Luis Obispo County Flood Control & Water Conservation District

# TYPE TO-A UNDERGROUND TURNOUT TYPICAL LAYOUT PLAN

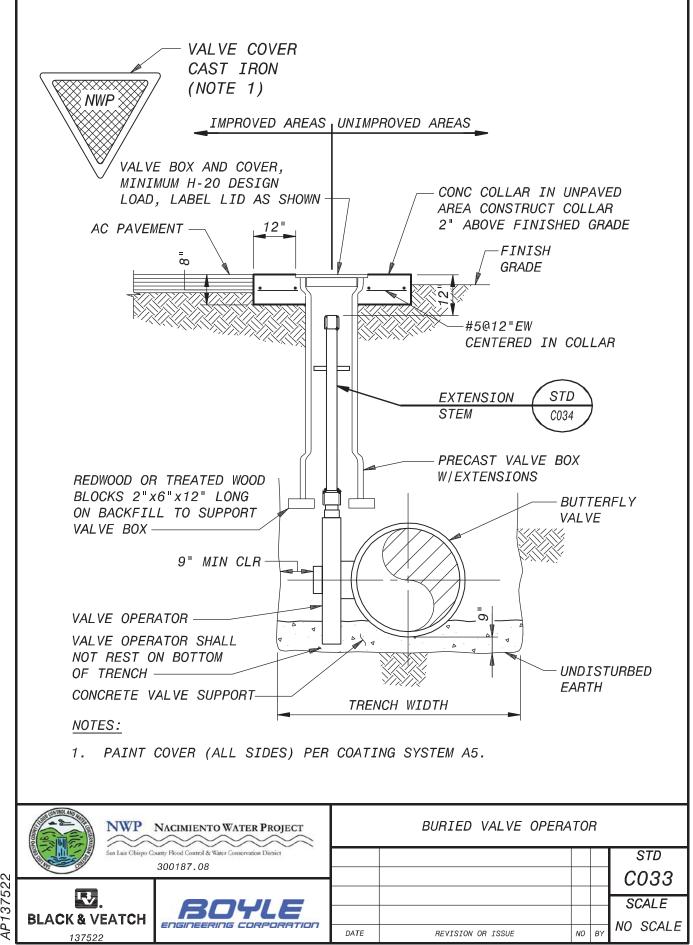
## FIGURE TM21-TO-051



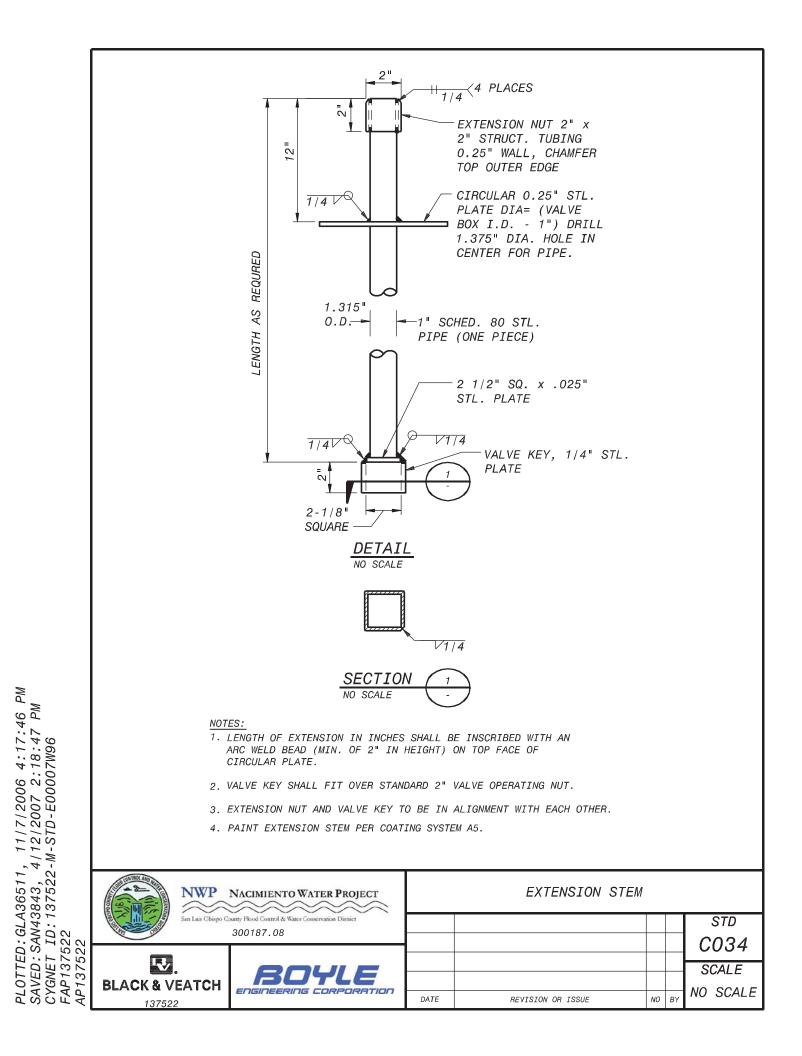


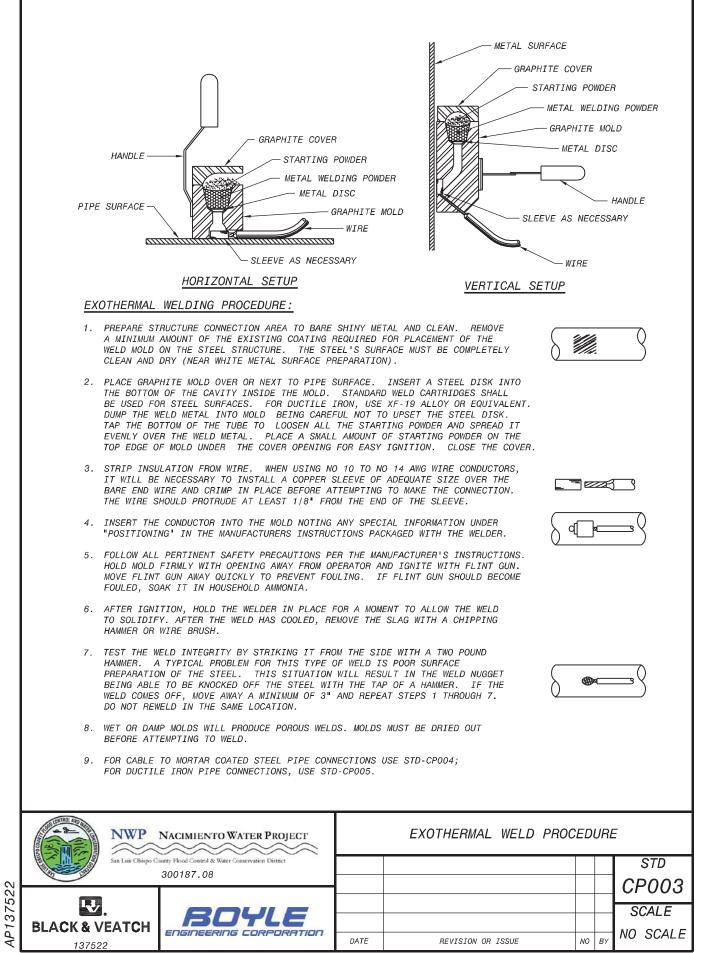

JAY37537, 3/8/2011 10:59:00 AM

# **TYPE TO-A UNDERGROUND TURNOUT TYPICAL LAYOUT SECTIONS**


#### **FIGURE TM21-TO-052**

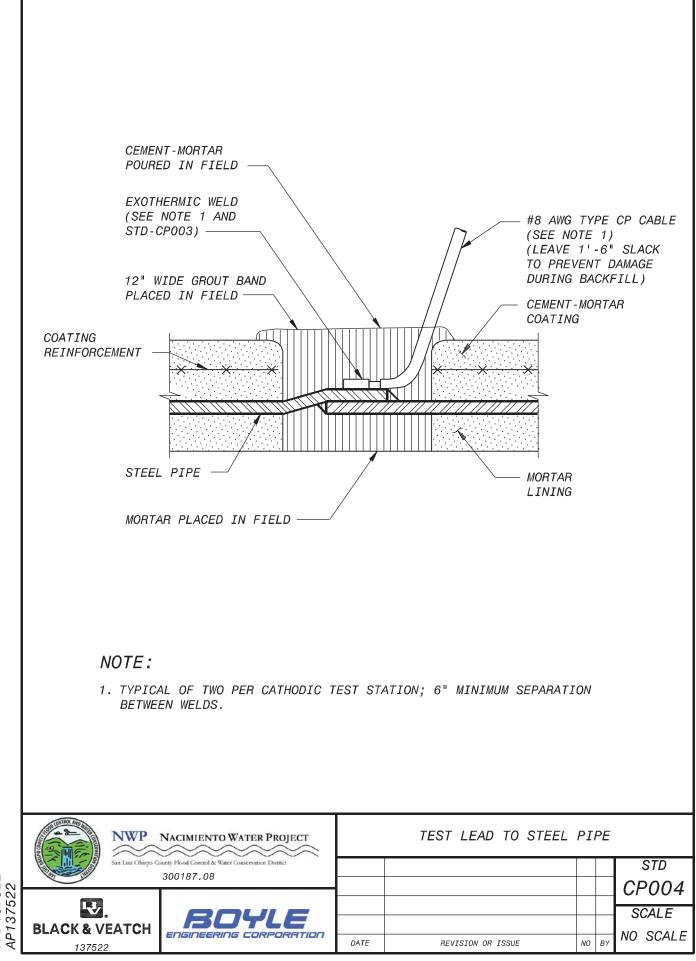
– PLACE AND COMPACT STRUCTURE BACKFILL TO ORIGINAL GRADE (TYP)


FROM NWP PIPELINE

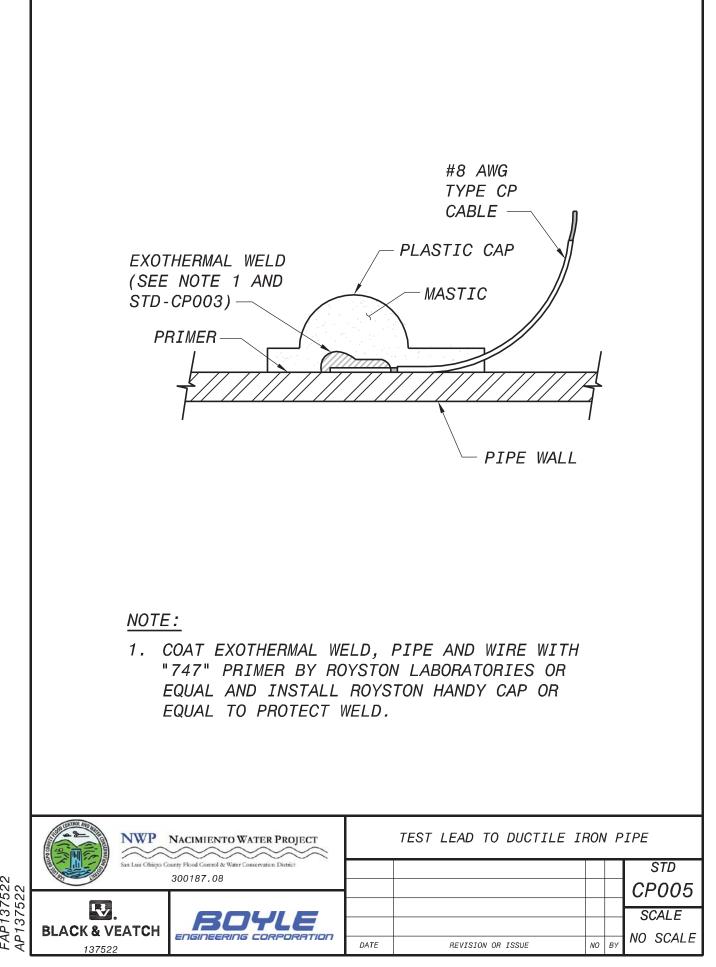



AM

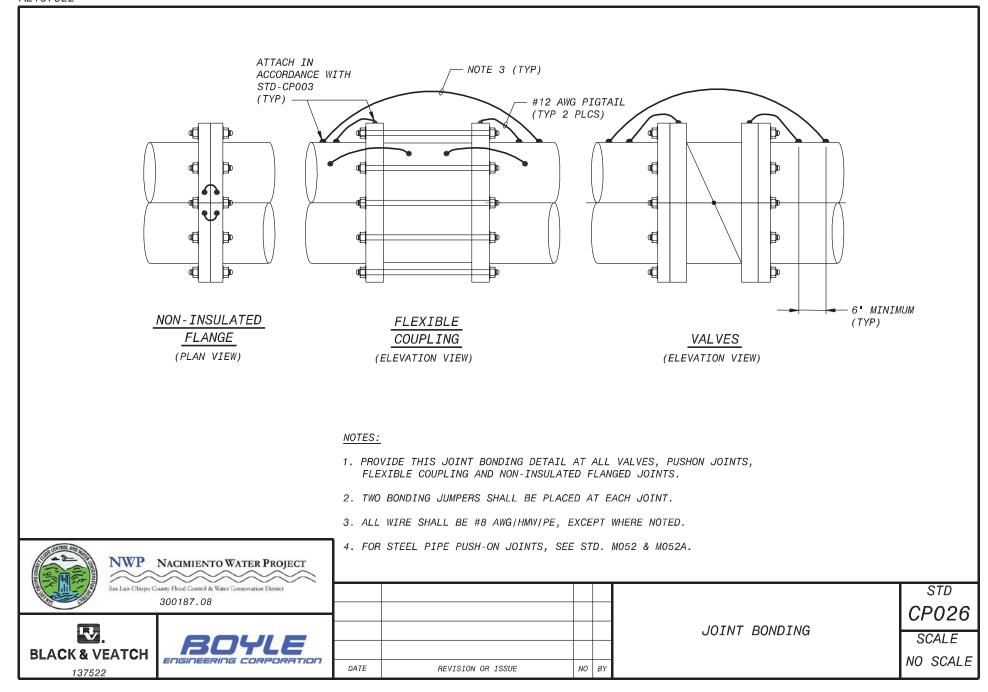



PLOTTED:GLA36511, 11/7/2006 4:15:53 PM SAVED:SAN43843, 4/12/2007 9:06:10 AM CYGNET ID:137522-M-STD-E00007XBY FAP137522 AP137522

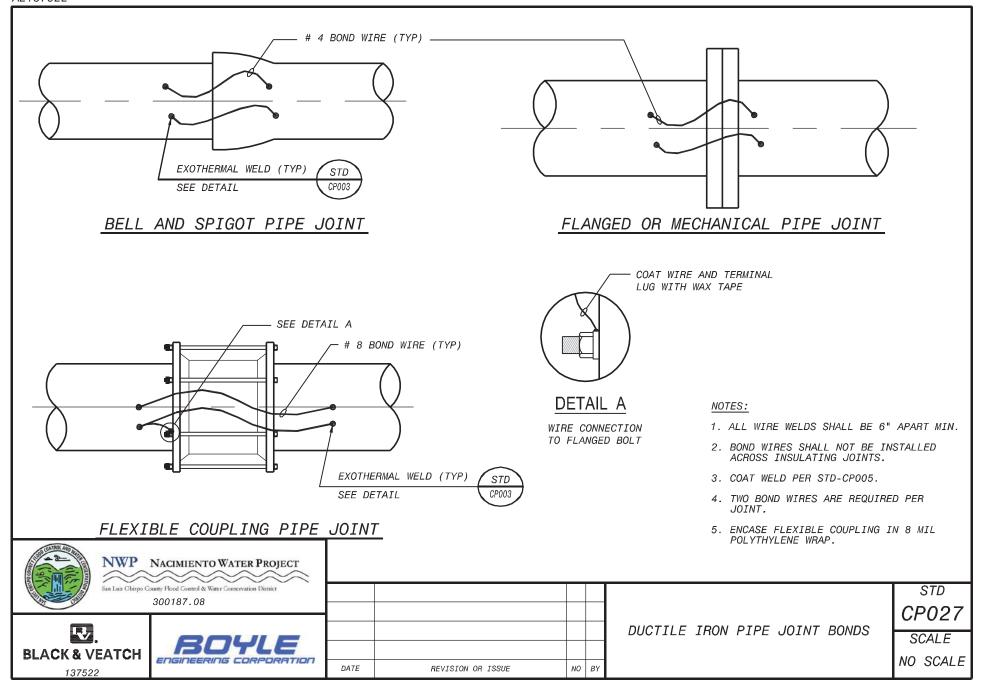




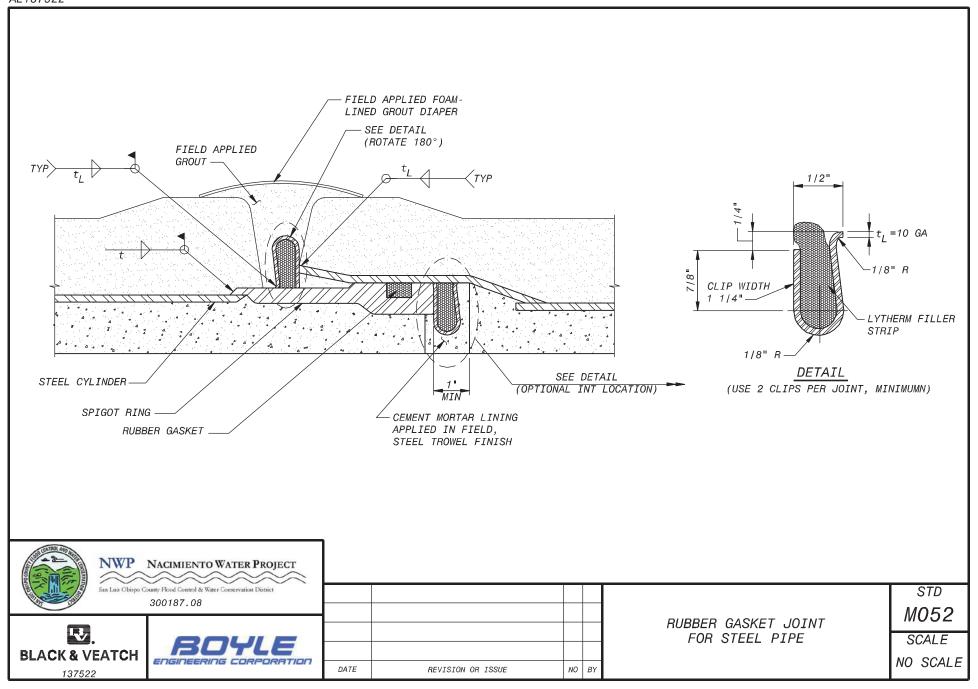

PLOTTED:GLA36511, 6/8/2006 5:57:13 F SAVED:GLA36511, 6/8/2006 5:57:44 PM CYGNET ID:137522-M-STD-E00007WZ0 FAP137522 AP137522

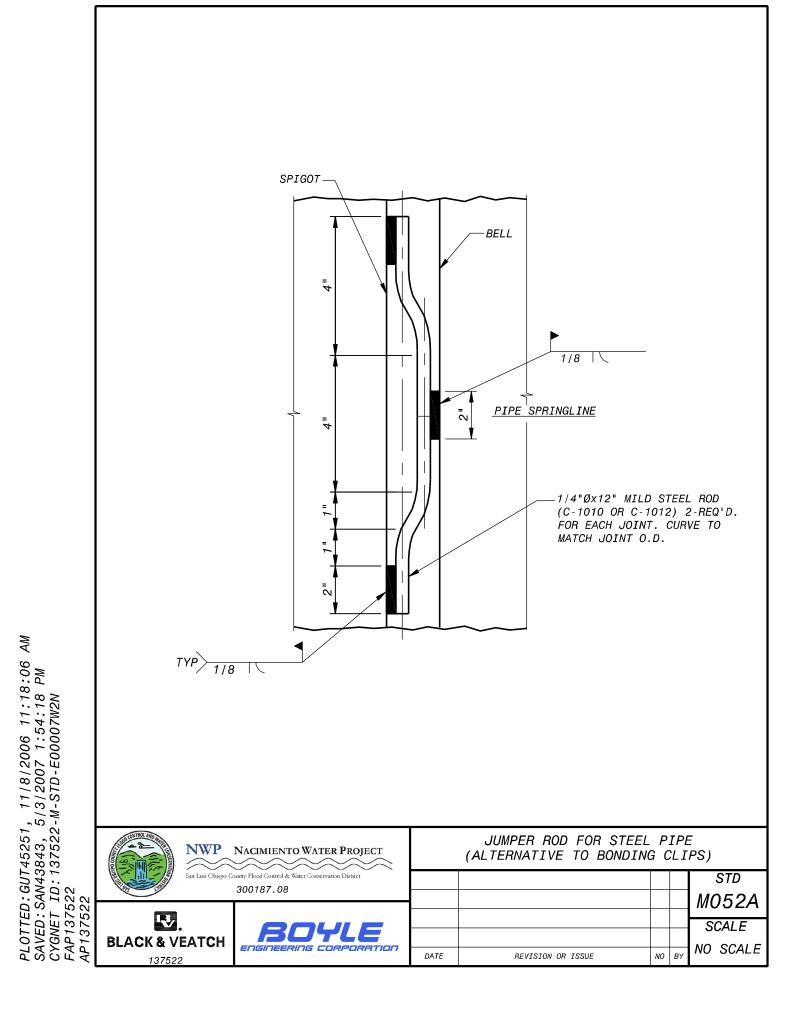

PM




PLOTTED:GUT45251, 11/8/2006 11:18:06 AM SAVED:GUT45251, 11/8/2006 11:19:14 AM CYGNET ID:137522-M-STD-E00007W2N FAP137522 AP137522




PLOTTED:GUT45251, 11/8/2006 11:15:16 AM SAVED:GUT45251, 11/8/2006 11:16:14 AM CYGNET ID:137522-M-STD-E00007X6H FAP137522 AP137522 PLOTTED: GLA36511, 6/9/2006 10:26:39 AM SAVED: GLA36511, 6/9/2006 10:26:52 AM CYGNET ID:137522-M-STD-E00007W2P FAL137522 AL137522




PLOTTED: GLA36511, 6/9/2006 11:24:55 AM SAVED: GLA36511, 6/9/2006 11:40:10 AM CYGNET ID:137522-M-STD-E00007WZT FAL137522 AL137522



PLOTTED: GLA36511, 11/8/2006 10:08:53 AM SAVED: SAN43843, 5/4/2007 7:29:04 AM CYGNET ID:137522-M-STD-E00007X01 FAL137522 AL137522

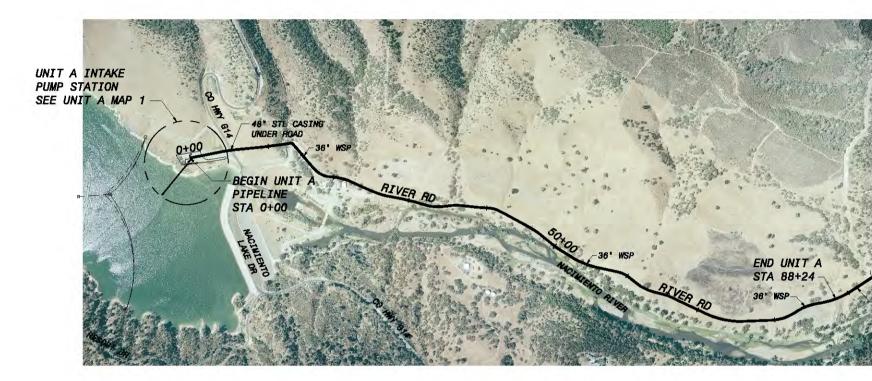




# ATTACHMENT TM21-3 UNIT MAPS

# List of Unit Maps

| Figure<br>Number | Title                |
|------------------|----------------------|
| 2-3              | Map of Unit A Map 1  |
| 2-4              | Map of Unit A Map 2  |
| 2-5              | Map of Unit A1 Map 1 |
| 2-6              | Map of Unit A1 Map 2 |
| 2-7              | Map of Unit C        |
| 2-8              | Map of Unit C1 Map 1 |
| 2-9              | Map of Unit C1 Map 2 |
| 2-10             | Map of Unit D        |
| 2-11             | Map of Unit B        |
| 2-12             | Map of Unit E        |
| 2-13             | Map of Unit F        |
| 2-14             | Map of Units F1 & F2 |
| 2-15             | Map of Unit G Map 1  |
| 2-16             | Map of Unit G Map 2  |
| 2-17             | Map of Unit G1       |
| 2-18             | Map of Unit G2       |
| 2-19             | Map of Unit H        |
| 2-20             | Map of Unit H1       |
| 2-21             | Map of Unit T2       |
| 2-22             | Map of Unit T4       |
| 2-23             | Map of Unit T6       |
| 2-24             | Map of Unit T11      |




MCC10764, 11/16/2010 8:30:57 AM 137522-G-FIG-N0001HRTH

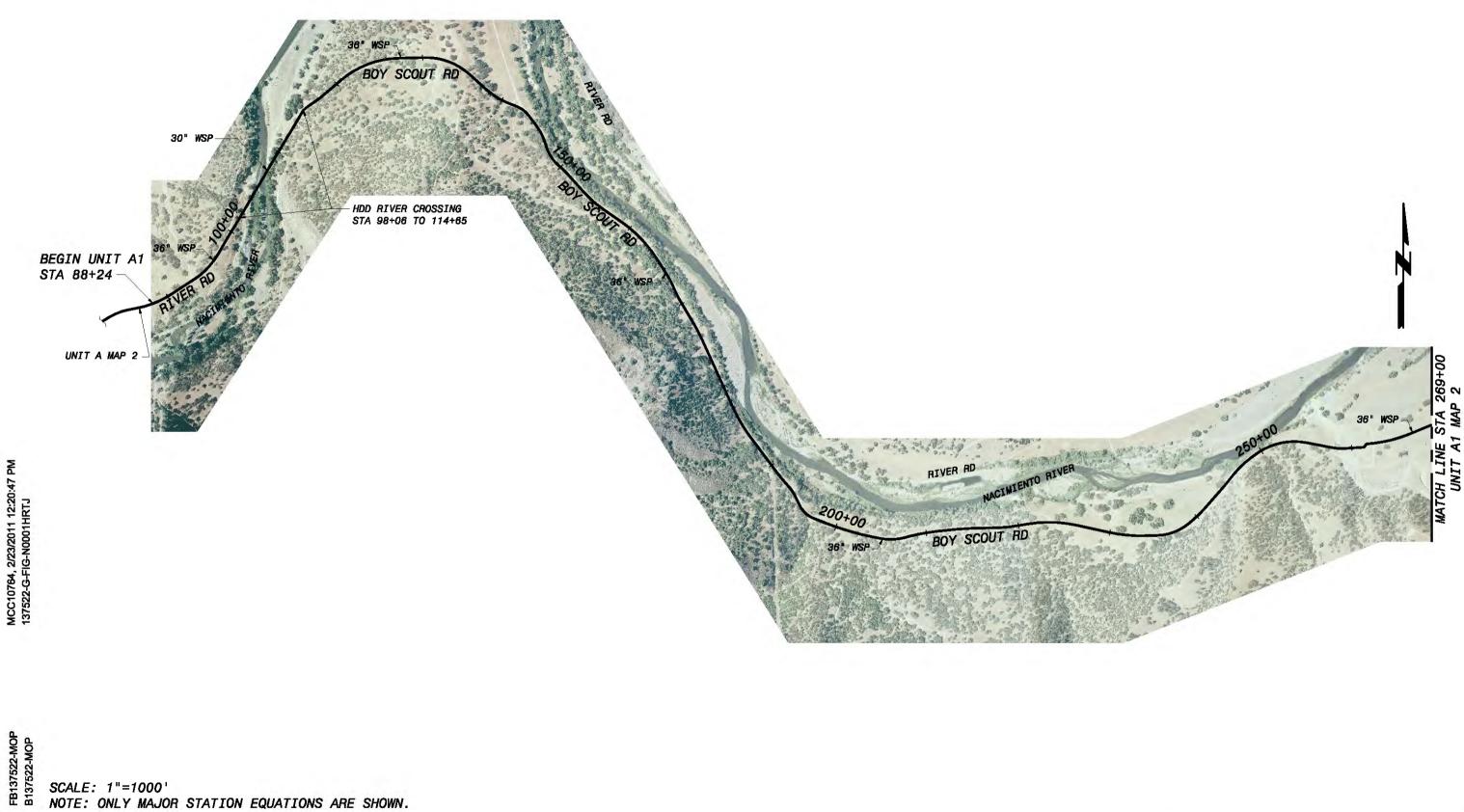


NWP NACIMIENTO WATER PROJECT  $\approx$ San Luis Obispo County Flood Control & Water Conservation Distric

# **MANUAL OF PROCEDURES** MAP OF UNIT A MAP 1



MCC10764, 11/16/2010 8:33:19 AM 137522-G-FIG-N0001HRTG

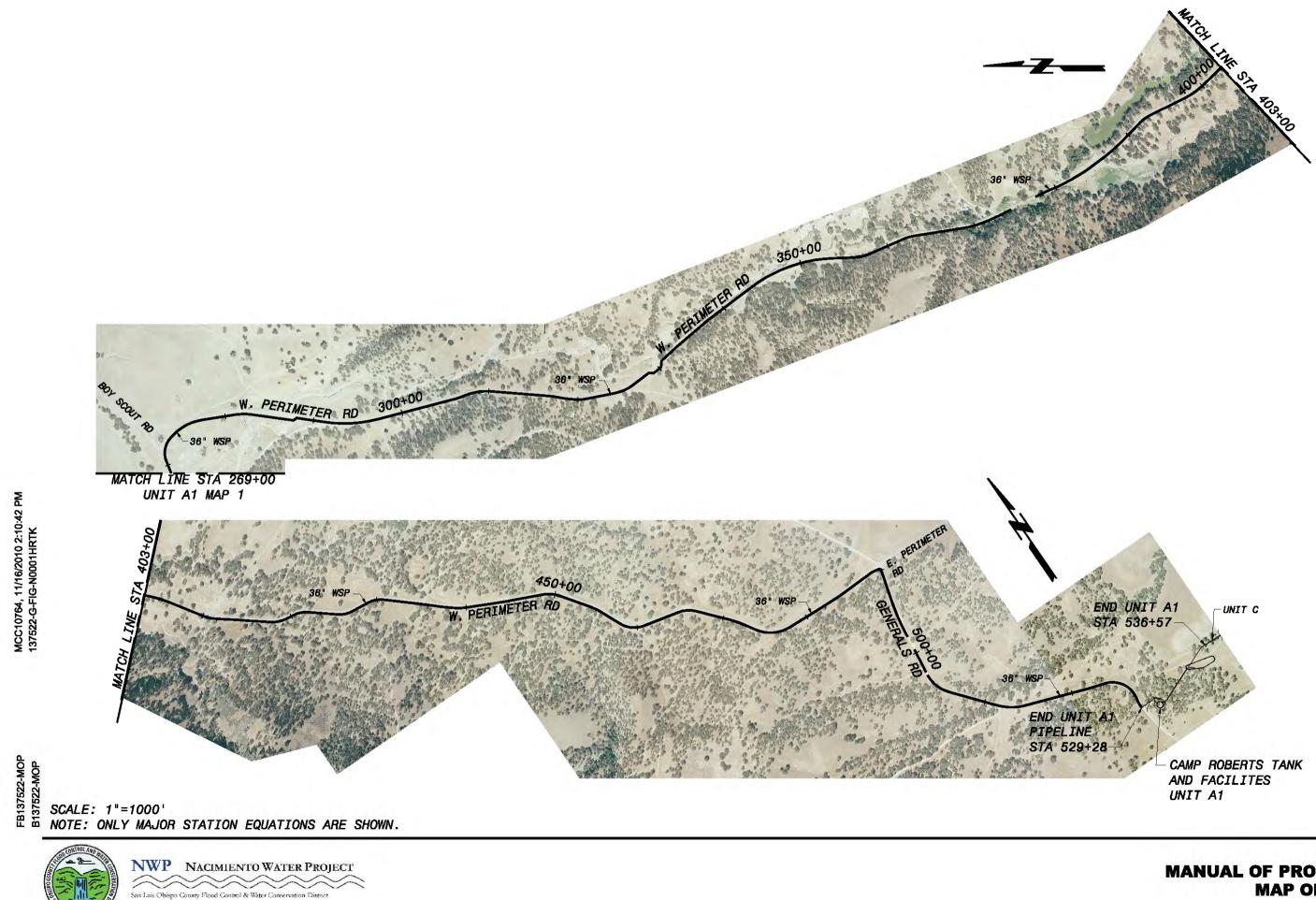

FB137522-MOP B137522-MOP

SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.

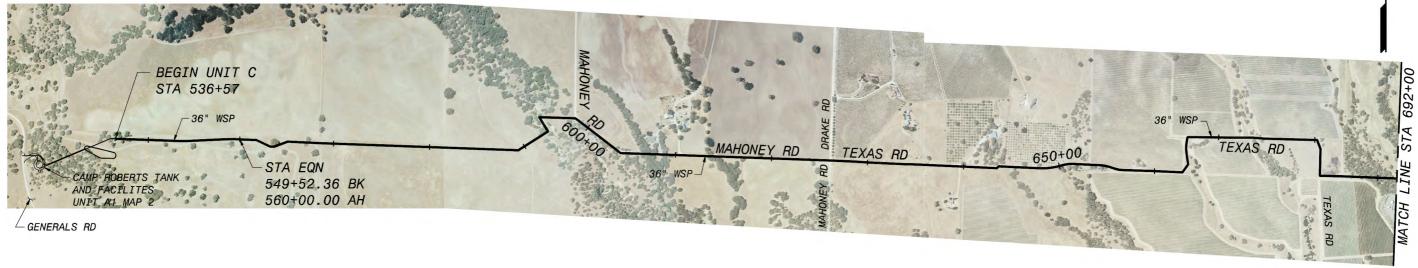


San Luis Obispo County Flood Control & Water Conservation District

UNIT A1




NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.




NWP NACIMIENTO WATER PROJECT  $\sim$ San Luis Obispo Gounty Flood Control & Water Conservation District

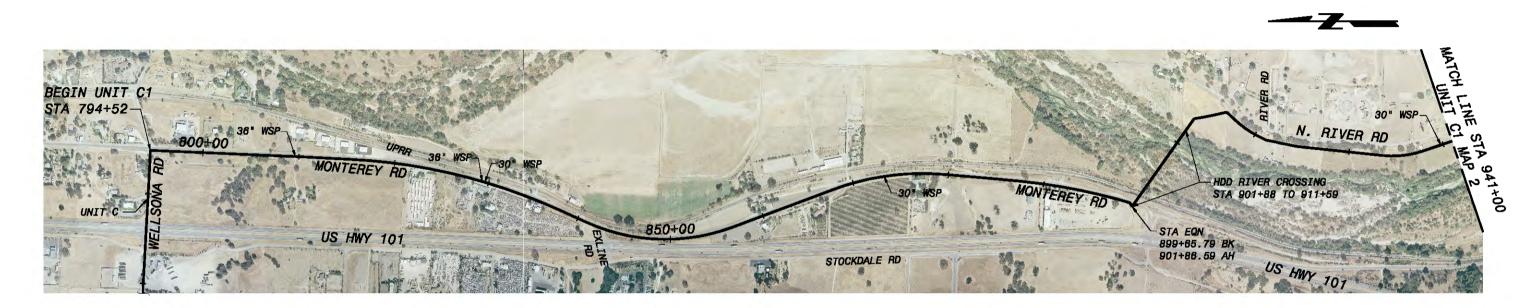
# **MANUAL OF PROCEDURES** MAP OF UNIT A1 MAP 1



# MANUAL OF PROCEDURES MAP OF UNIT A1 MAP 2






FB137522-MOP B137522-MOP

SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.

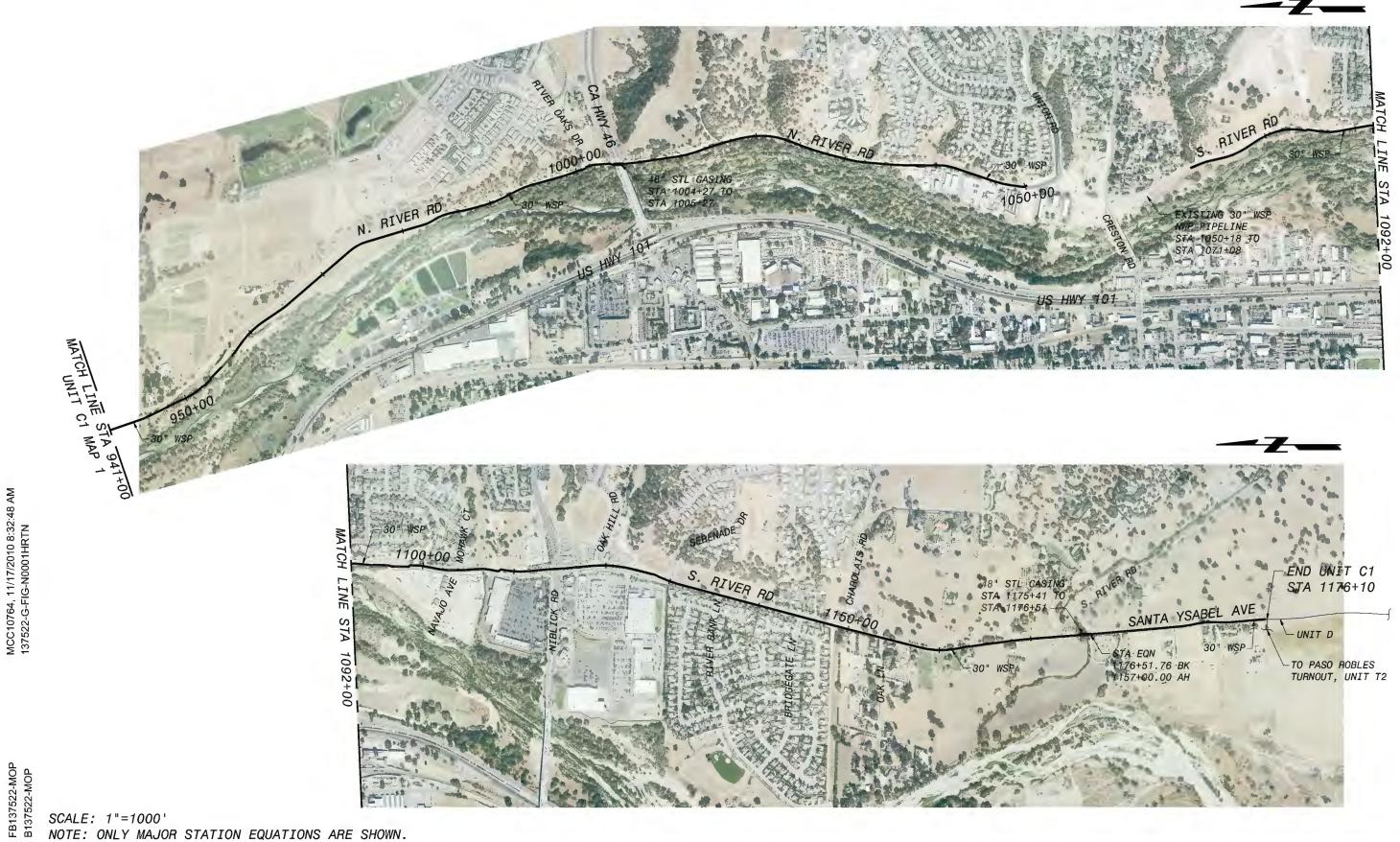


NWP NACIMIENTO WATER PROJECT -San Luis Obispo County Flood Control & Water Conservation District

# MANUAL OF PROCEDURES **MAP OF UNIT C**



MCC10764, 11/16/2010 2:14:28 PM 137522-G-FIG-N0001HRTM

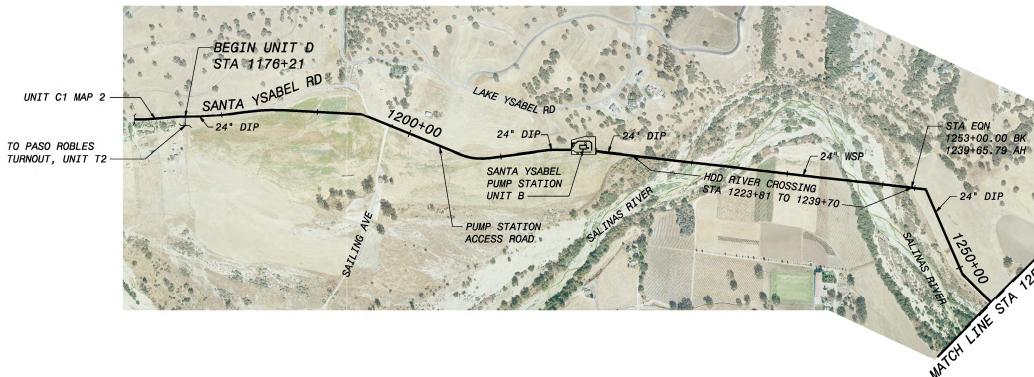

FB137522-MOP B137522-MOP

SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



San Luis Obispo County Flood Control & Water Conservation District

MTROLAND AND




NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



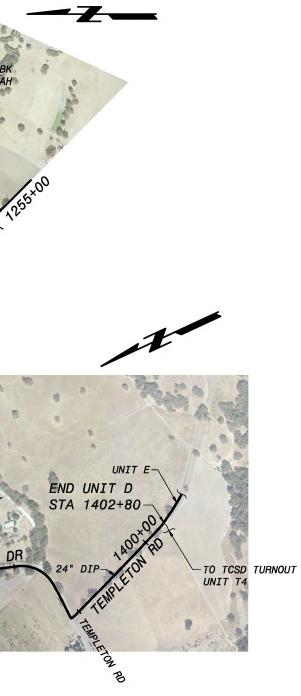
NWP NACIMIENTO WATER PROJECT 2 San Luis Obispo County Flood Control & Water Conservation District

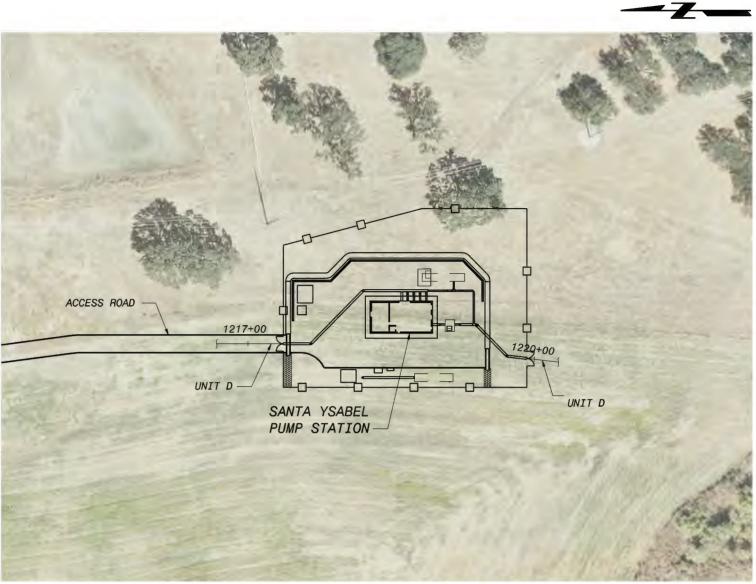
# **MANUAL OF PROCEDURES MAP OF UNIT C1** MAP 2





FB137522-MOP B137522-MOP

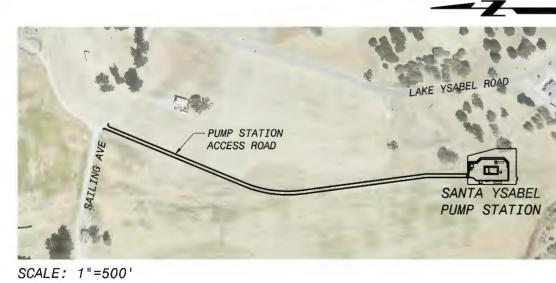

MCC10764, 2/23/2011 12:23:20 PM 137522-G-FIG-N0001HSFV


SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



San Luis Obispo County Flood Control & Water Conservation District

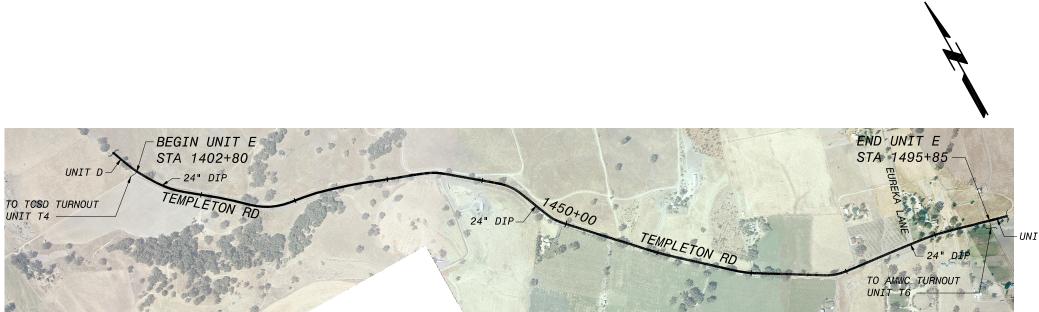
## **MANUAL OF PROCEDURES** MAP OF UNIT D






SCALE: 1"=100'

MCC10764, 11/16/2010 9:12:33 AM 137522-G-FIG-N0001HS80








San Luis Obispo County Flood Control & Watter Conservation District

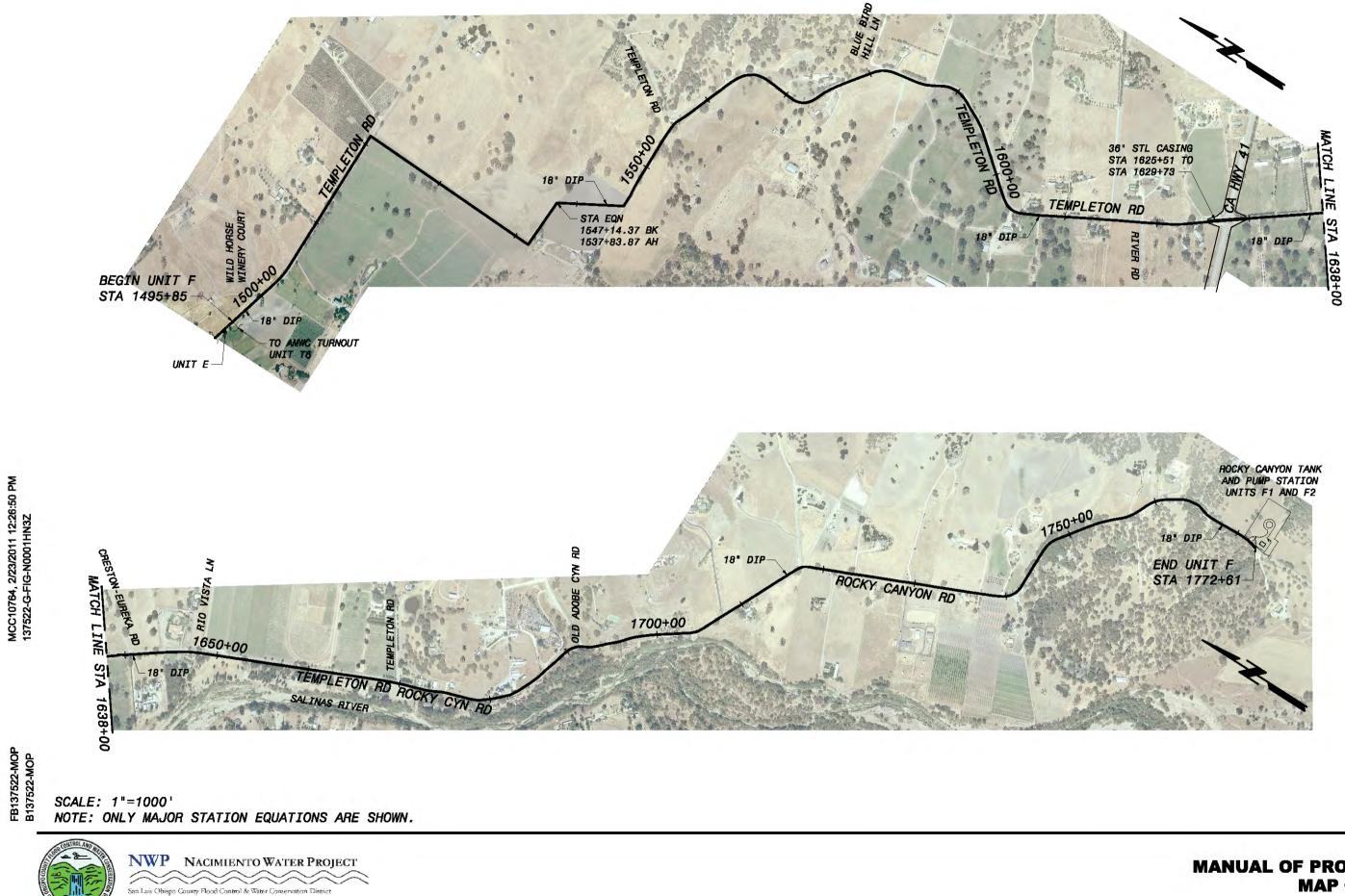
MANUAL OF PROCEDURES MAP OF UNIT B



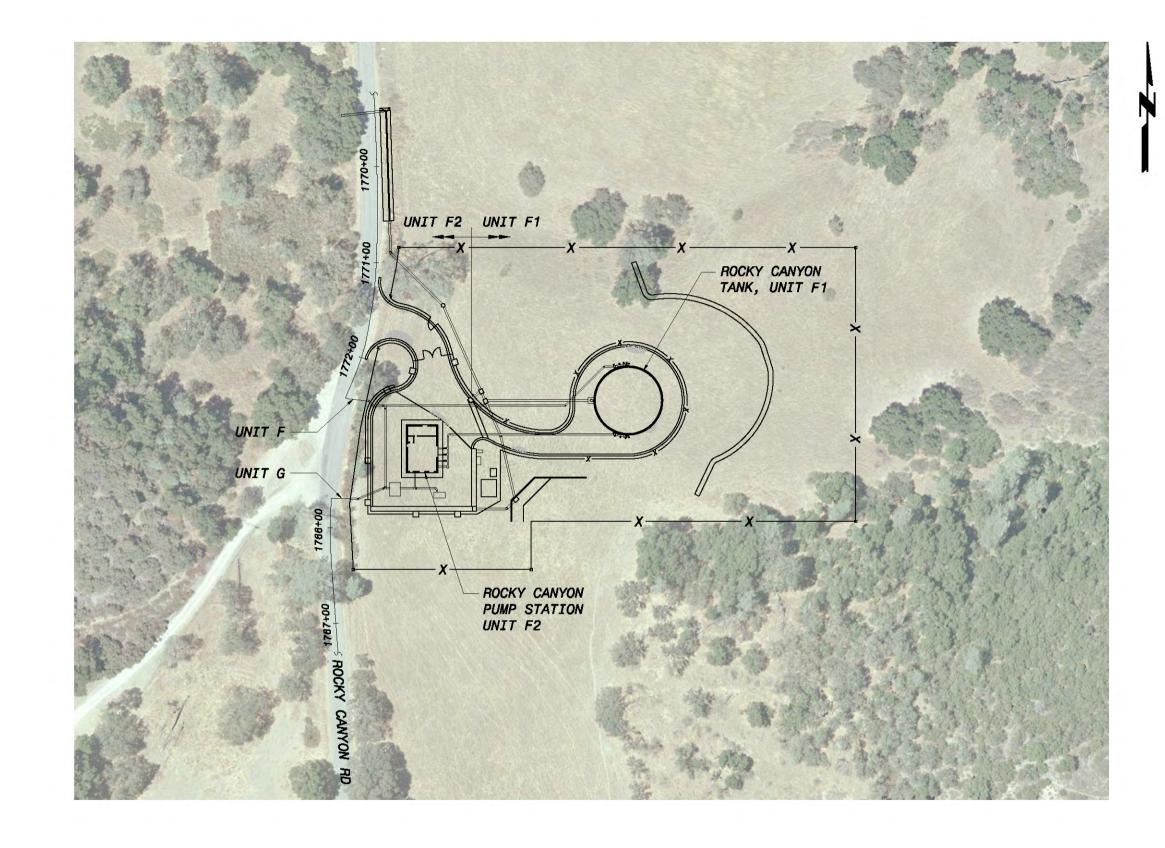
MCC10764, 2/23/2011 12:25:15 PM 137522-G-FIG-N0001HSFT

FB137522-MOP B137522-MOP

SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.




NWP NACIMIENTO WATER PROJECT San Luis Obispo County Flood Control & Water Conservation District


## **MANUAL OF PROCEDURES** MAP OF UNIT E

**FIGURE 2-12** 

-UNIT F



# **MANUAL OF PROCEDURES MAP OF UNIT F**



MCC10764, 11/16/2010 8:50:46 AM 137522-G-FIG-N0001HT5Z

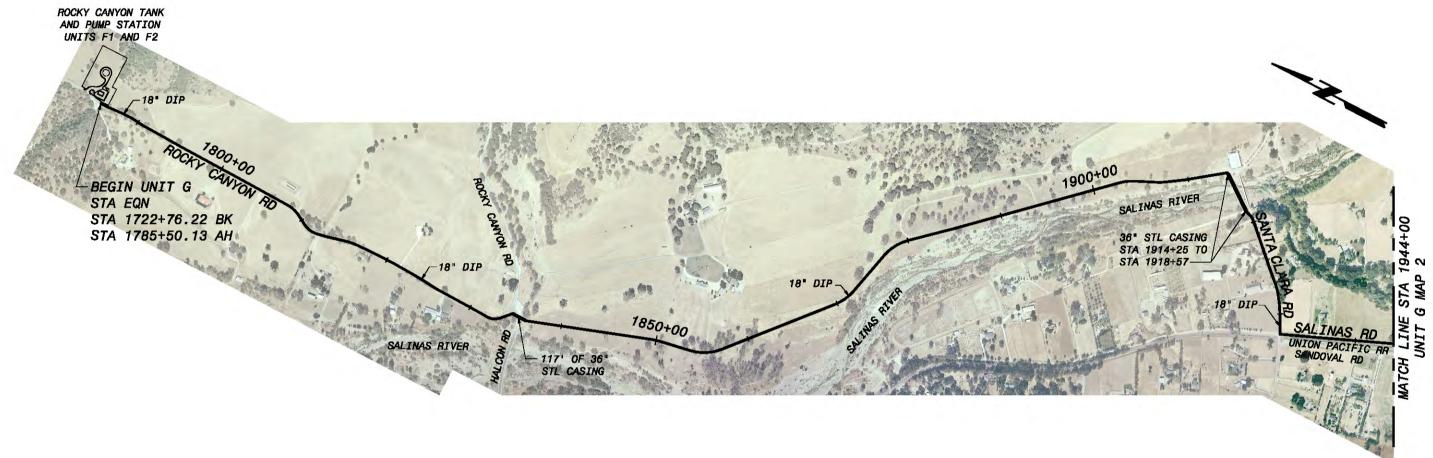
FB137522-MOP B137522-MOP

SCALE: 1"=100'



San Luis Obispo County Hood Control & Water Conservation District

## MANUAL OF PROCEDURES MAP OF UNITS F1 AND F2



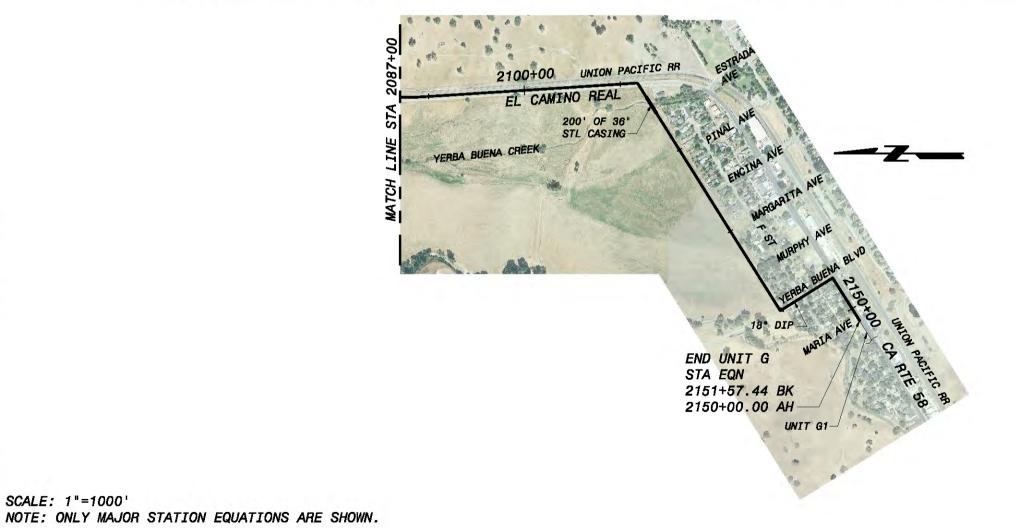

FB137522-MOP B137522-MOP

NWP NACIMIENTO WATER PROJECT  $\approx$ San Luis Obispo County Flood Control & Water Conservation District

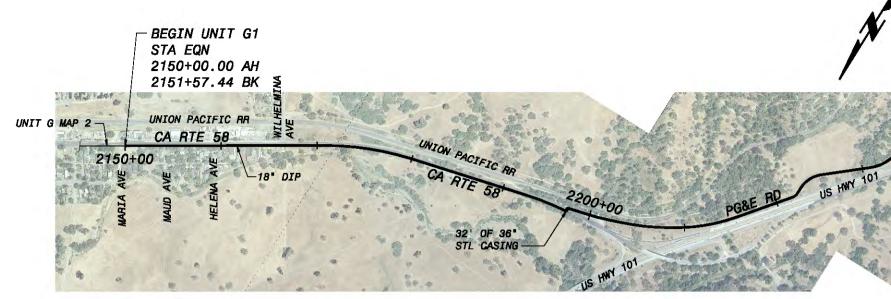
SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.

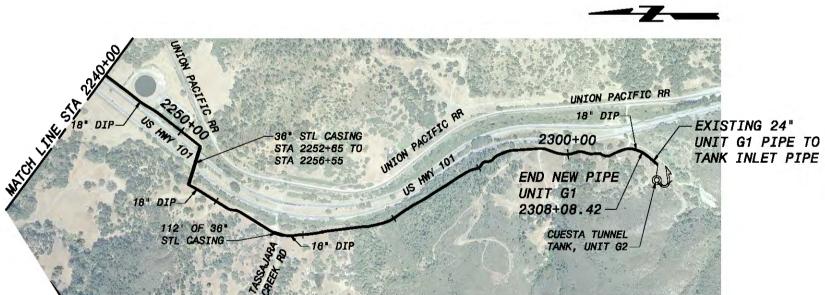







SCALE: 1"=1000'


NWP NACIMIENTO WATER PROJECT  $\sim\sim\sim\sim\sim$ San Luis Ohispo County Flood Control & Water Conservation District


FB137522-MOP B137522-MOP

MCC10764, 11/16/2010 8:52:30 AM 137522-G-FIG-N0001HTTR



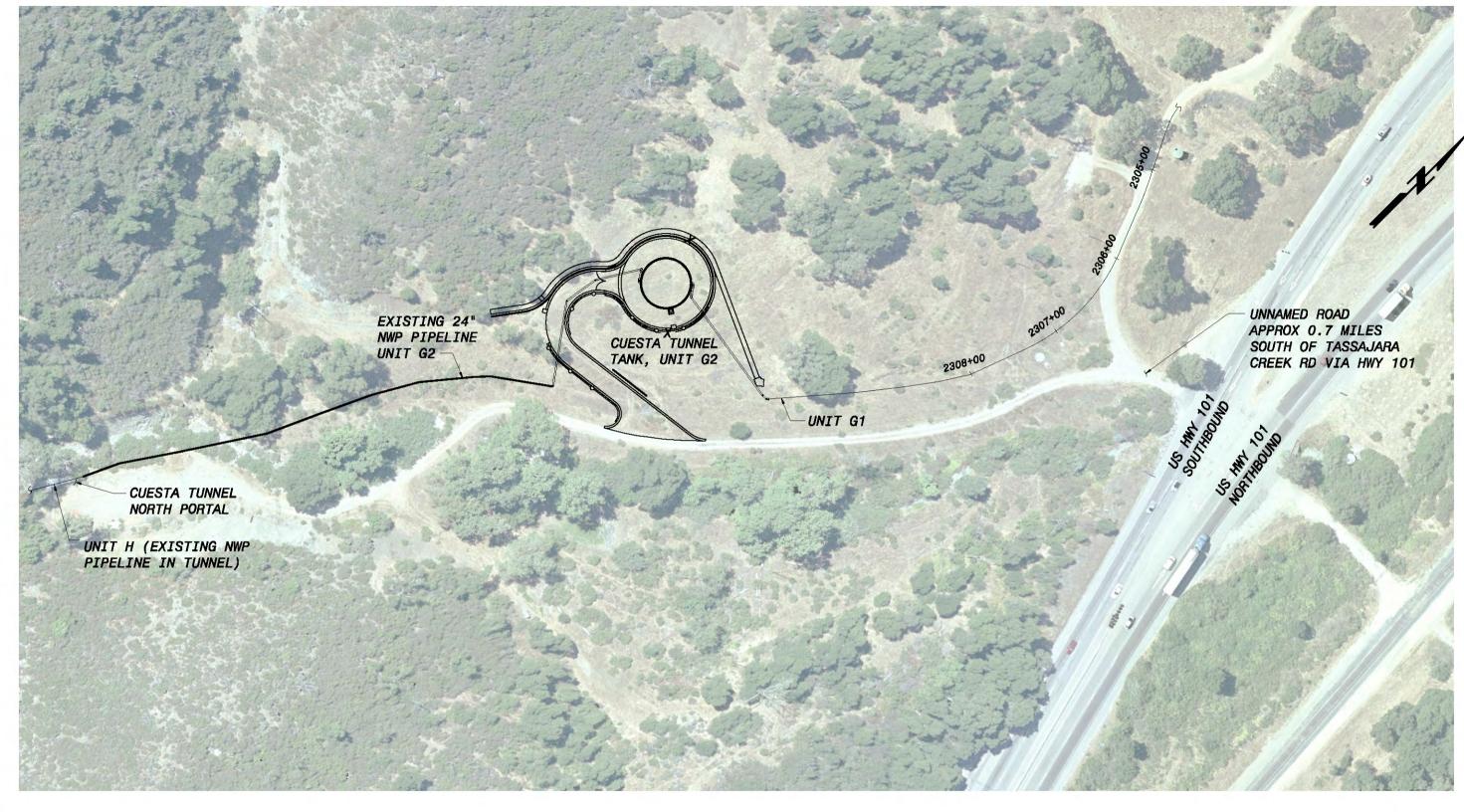








FB137522-MOP B137522-MOP


SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



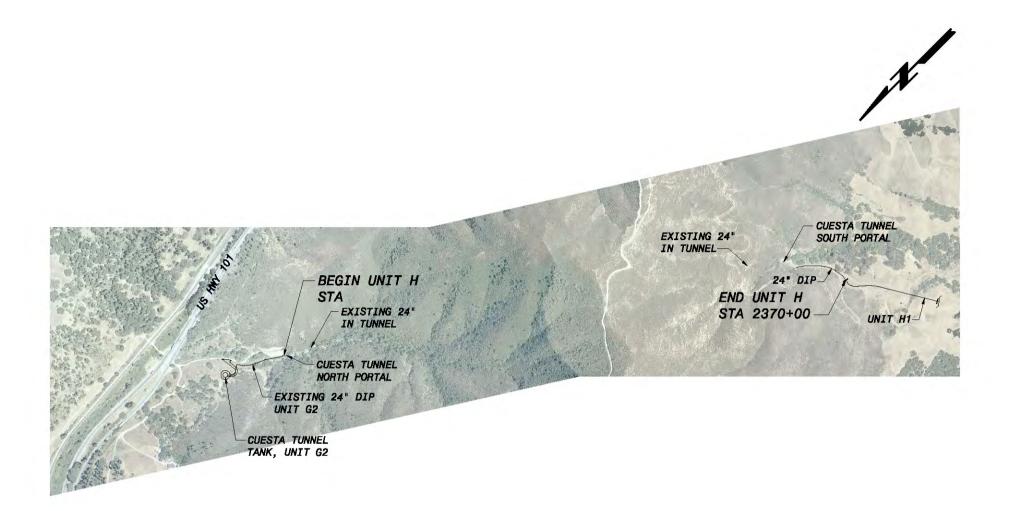
 $\sim$ San Luis Obispo County Flood Control & Water Conservation District



#### **MANUAL OF PROCEDURES MAP OF UNIT G1**



MCC10764, 11/16/2010 9:01:29 AM 137522-G-FIG-N0001HT5Y


FB137522-MOP B137522-MOP

SCALE: 1"=100'

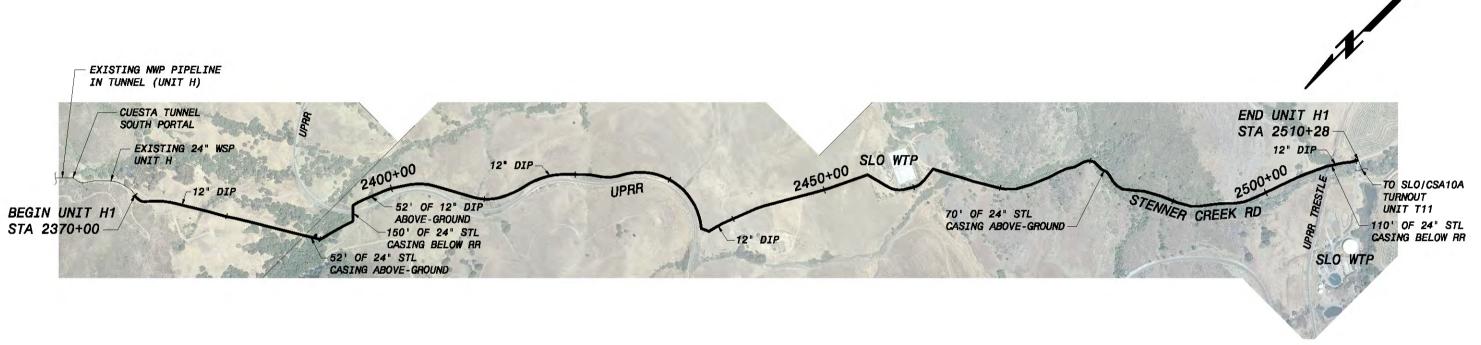


San Luis Obispo County Flood Control & Water Conservation District

#### MANUAL OF PROCEDURES MAP OF UNIT G2



MCC10764, 11/16/2010 9:04:46 AM 137522-G-FIG-N0001HTD5


FB137522-MOP B137522-MOP

SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.

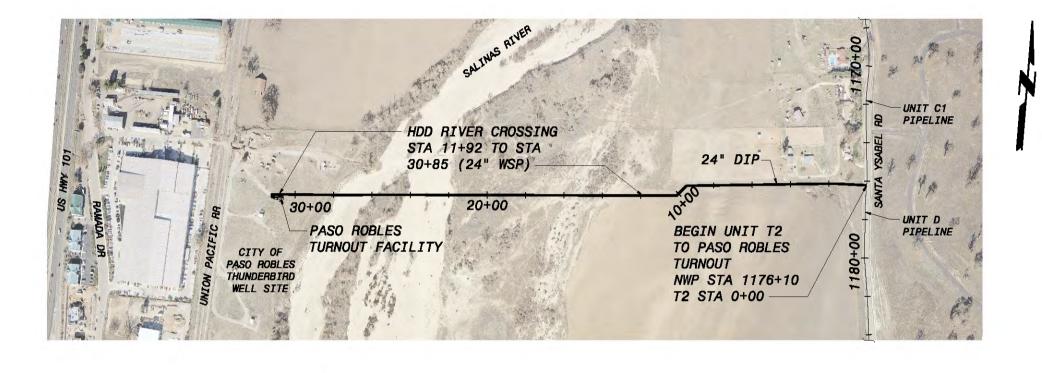


San Luis Obispo County Flood Control & Water Conservation District

## MANUAL OF PROCEDURES MAP OF UNIT H



MCC10764, 3/18/2011 11:24:33 AM 137522-G-FIG-N0001HRTP


FB137522-MOP B137522-MOP

SCALE: 1"=1000' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.

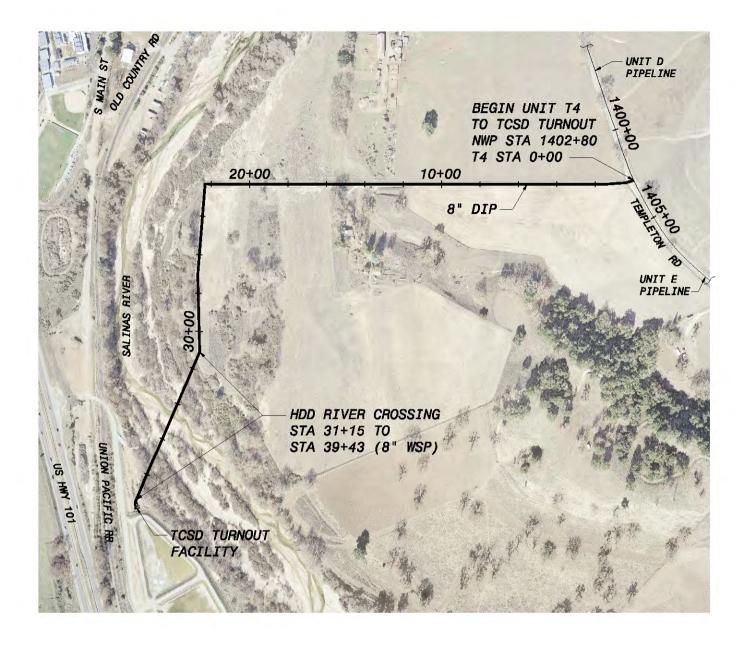


San Luis Obispo County Flood Control & Water Conservation District

MANUAL OF PROCEDURES MAP OF UNIT H1



MCC10764, 11/16/2010 3:34:02 PM 137522-G-FIG-N0001HV34


FB137522-MOP B137522-MOP

SCALE: 1"=500' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.

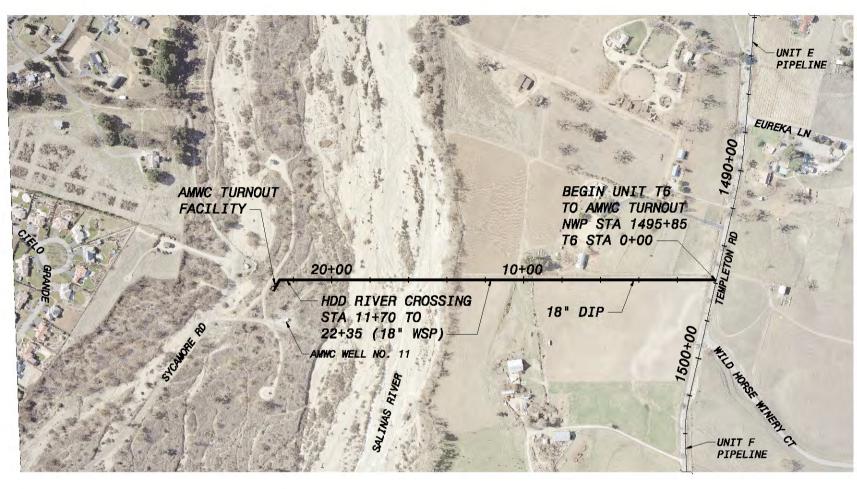


San Luis Obispo County Flood Control & Water Conservation District

# MANUAL OF PROCEDURES MAP OF UNIT T2



MCC10764, 2/23/2011 12:35:00 PM 137522-G-FIG-N0001HV3K


FB137522-MOP B137522-MOP

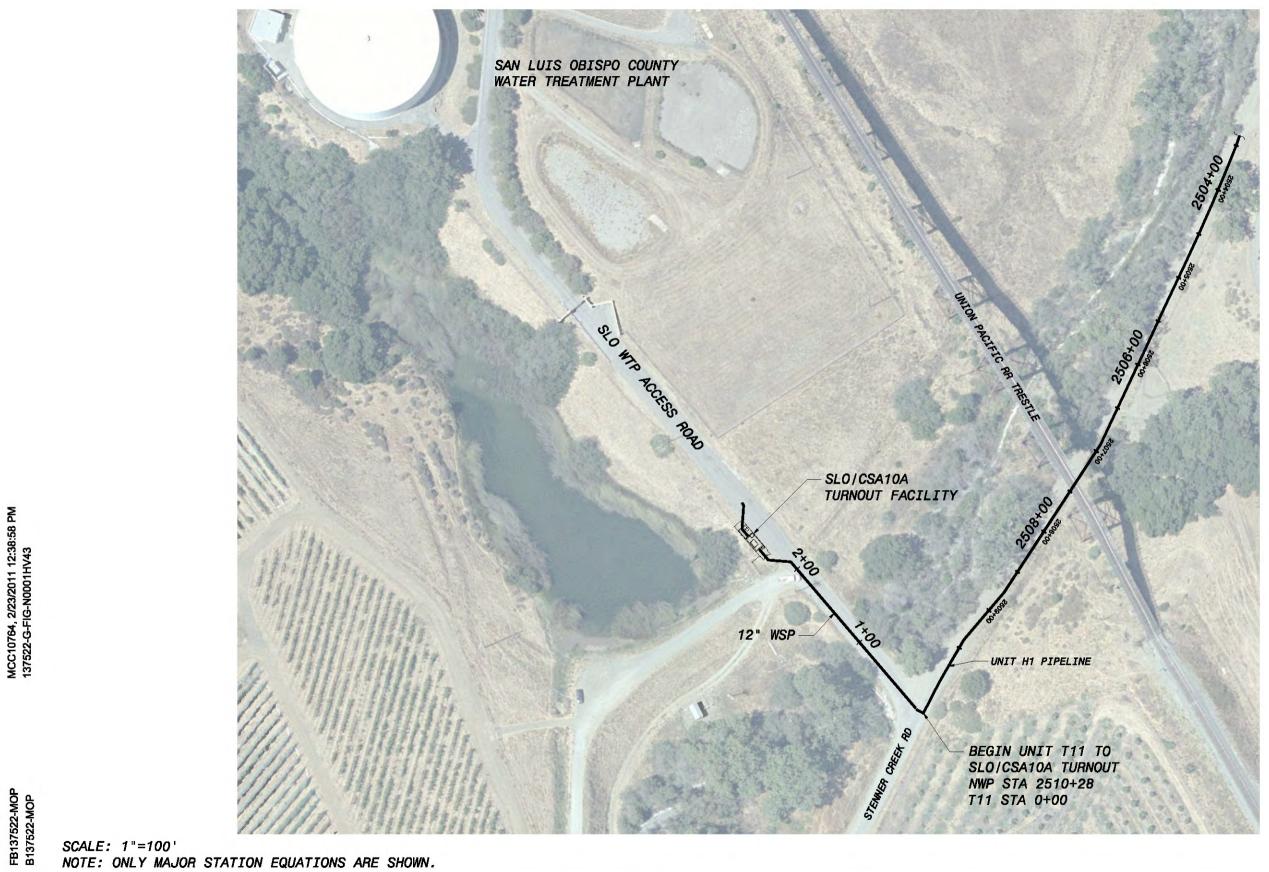
SCALE: 1"=500' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



San Luis Obispo Gounty Flood Control & Water Conservation District






FB137522-MOP B137522-MOP

SCALE: 1"=500' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



San Luis Obispo Gounty Flood Control & Water Conservation District

# MANUAL OF PROCEDURES MAP OF UNIT T6



SCALE: 1"=100' NOTE: ONLY MAJOR STATION EQUATIONS ARE SHOWN.



NWP NACIMIENTO WATER PROJECT San Luis Obispo County Flood Control & Water Conservation District

# **MANUAL OF PROCEDURES MAP OF UNIT T11**