## Paso Robles Groundwater Basin Computer Model Update Final Report

San Luis Obispo County Board of Supervisors January 13, 2015

#### **Presentation Overview**

- Computer Model Update Process
- Perennial Yield Estimate
- Results of Predictive
  Scenarios
- Recommended
  Action



## **Computer Model Update Process**

► The primary objective of the Basin Model update is to provide an updated, accepted tool for simulating Basin response under current and projected future conditions.

## **Computer Model Update Process**

- ✓ Data Collection and Integrity Analysis
- ✓ Hydrogeology Analysis
- ✓ Watershed Model (Inflow/Outflow Preliminary Analysis)
- **✓ Water Balance Preliminary Estimates**
- ✓ Post Model Input Audit
- ✓ Model Calibration/Estimate Refinement
- ✓ Sensitivity Analysis
- ✓ Predictive Scenarios
- ✓ Reporting and Presentation Public Draft
- ✓ Final Report

## Average Annual Inflows (1981-2011)



**TOTAL AVERAGE ANNUAL INFLOW = 108,400 AFY** 

## Average Annual Outflows (1981-2011)



**TOTAL AVERAGE ANNUAL OUTFLOW = 110,800 AFY** 

#### Water Balance for Recalibrated Basin Model

Total Inflow – Total Outflow = Change in Groundwater Storage

# Water Balance of Paso Robles Groundwater Basin Average of 1981 – 2011 [AFY]

| Total Inflow | Total Outflow | Change in<br>Storage |
|--------------|---------------|----------------------|
| 108,400      | 110,800       | -2,400               |

## **Analysis Included in Scope**

- Updated Perennial Yield Estimate
  - Perennial Yield = Total Groundwater Pumping + Change in Groundwater Storage
- **► Two Predictive Baseline Simulations** 
  - ▶ No Growth Scenario
  - Growth Scenario

#### **Perennial Yield Estimate**

Hydrologic Base Period = Covers Wet, Dry and Average Hydrologic Cycles

Average of Base Period 1982 – 2010 [AFY]

| Total Pumping | Change in<br>Storage | Perennial Yield |
|---------------|----------------------|-----------------|
| 92,600        | -2,900               | 89,700          |

## Change in Layer 4 Groundwater Elevations (2012-2040) Model Run 1 – Baseline with No Growth



## Change in Layer 4 Groundwater Elevations (2012-2040) Model Run 2 – Baseline with Growth



# **Next Steps**

- Prepare additional refinements to the model
- Conduct nine analyses (additional model runs)

#### Refinements

- ► Refining the evaluation of inflow from the watershed to the Basin
- ► Using a different software module for streamflow/basin interaction
- ► Refining the evaluation of rainfall percolation and return flows in the Basin
- ► Refining the range of hydraulic conductivity values for recalibration



#### Additional Model Runs

- Updated Baseline with Growth
- Analysis 1 Demand Reduction Scenario
- Analysis 2 Salinas River Recharge
- Analysis 3 Offset Basin Pumping with Recycled Water
- ▶ Analysis 4 Offset Water Demand in Estrella Sub-Area
- ► Analysis 5 Additional Releases to Huer Huero Creek
- Analysis 6 Additional Releases to Estrella River
- Analysis 7 Offset Pumping in Creston Sub-Area
- Analysis 8 Offset Pumping in Shandon Sub-Area

#### **Recommended Action**

- Agreement Amendment (\$155K)
  - Prepare additional refinements to the model
  - Conduct nine analyses

# Questions?

