

Paso Robles Groundwater Basin Supplemental Supply Options Study

December 15, 2016

Agenda

- Overview
- Groundwater Model Study update
 - What's changed since July's results
 - New results
- Supply Options Study
 - Nacimiento Water Project (NWP) Delivery
 - State Water Project (SWP) Delivery
 - Recycled Water (RW) Delivery
 - Combined Supply Option Scenarios
- Next steps

upply Options Study Workshop 12.15.16.p

Overview

- Groundwater model update
 - Model update complete 2014
 - Peer review recommendations
 - Refinement of model in 2015/16, presented July 2016
 - Model runs completed Nov 2016
- Supply options study
 - Goal to develop supplemental water supply options for potential use in Paso Basin
 - Identify sources and quantities available
 - Develop strategies and prioritization of options to maximize benefits

Projects Timeline

- SLOCFWCD Actions
- Supply Options Study/Groundwater Modeling Activities
- ★ Today's Meeting

Supply Study and Groundwater Study are closely connected

Groundwater Model Runs

Nacimiento Water

- Nacimiento Supply
- Exchange Opportunities

State Water

- Treated and Raw Options
- Exchanges/Purchases

Recycled Water

- Local Opportunities
- Exchanges/Investment

Strategy
Development
and Report

- Prioritized Options
- Recommendations
- Next Steps: SGMA

GSAs

Input by agencies, partners, stakeholders

Model refinement and predictive alternatives to help define benefits of supplemental supplies

- Targeted specific subareas and specific activities
- Declining trends:
 - Estrella Subarea
 - Creston Subarea
 - Shandon Subarea
 - San Juan Subarea
- Iterative modeling to determine how much water needed to stabilize basin

Model runs developed in coordination with advisory committees

	Model Run	Recycled Water	State Water	Nacimiento Water
1	Conservation			
2	Salinas River recharge			X
3	Offset basin pumping with recycled water	X		
4	Offset pumping in Estrella Subarea	X		X
5	Additional releases to Huer Huero Creek	X	X	X
6	Additional releases to Estrella River	X	X	X
7	Offset pumping in Creston Subarea		X	X
8	Offset pumping in Shandon Subarea		X	

General goal to stabilize basin

- Basin Management Objectives (BMOs) established in Paso Robles Groundwater Basin Management Plan 2011
- Goal = How much water is needed to stabilize the basin (BMO wells) by 2040; may exceed available supply
- Consistent with Sustainable Groundwater Management Act (SGMA) requirements

GROUNDWATER MODEL STUDY UPDATE

Paso Robles groundwater basin model

- Developed in 2005 by Fugro, ETIC and Cleath and Assoc.
- Updated in 2014 by GSSI and Todd GW (Incorporated watershed model)
- Refined and recalibrated groundwater model in 2016 by GSSI

Revisions based on comments from July meeting

City of Paso Robles

NWP operations understanding

Atascadero Mutual Water Company (MWC)

Location of percolation basin corrected

Water Surface Elevations (WSE)

 Transition between historical and predicted WSE adjusted so no big spike in Model Year 1 (2012) output

upply Options Study Workshop 12.15.16.ppt

Effects: Revised baseline run

- Total average change in storage is 2,191 AFY greater deficit than July 2016 draft.
 - Nov 2016 Revised: -32,844 AFY
 - July 2016 model run: -30,653 AFY
 - 2014 model: -26,159 AFY

Effects: Estrella BMO hydrograph baseline

Effects: Creston BMO hydrograph baseline

Supply Options Study Workshop 12.15.16.pptx

Effects: Shandon BMO hydrograph baseline

Effects: San Juan BMO hydrograph baseline

16

Supply Options Study Workshop 12.15.16.pptx

Effects: Atascadero BMO hydrograph baseline

upply Options Study Workshop 12.15.16.ppt

Overall effect showed that more water was needed throughout the basin

	Amount of Supply Needed to Reach Composite BMOs	
Modeling Run	July 2016 Model	Nov 2016 Model
1) Conservation	24,000 AFY	35,100 AFY
2) Salinas River ⁽¹⁾	4,899 AFY	5,133 AFY ⁽¹⁾
3) RW	4,059 AFY	4,059 AFY
4) Offset Pumping Estrella (2)	20,495 AFY	25,974 AFY
5) Huer Huero Creek Recharge	15,572 AFY	30,597 AFY
6) Estrella River Recharge (2)	28,813 AFY	49,309 AFY
7) Offset Pumping Creston	4,377 AFY	4,377 AFY

Notes:

- (1) Composite BMO range not reached in either July or Nov 2016 model
- (2) Composite BMO range not reached in July 2016 model. Additional percolation basins added in Nov 2016 model.

Conservation run shows where supplemental supplies are needed

SUPPLY OPTIONS STUDY

ipply Options Study Workshop 12.15.16.ppl

Basin solution: A combo of delivery, recharge, and conservation in multiple sub-areas

- Direct delivery is most beneficial (but high infrastructure costs)
- Recharge basins less effective than direct delivery
 - Important to be able to capture water during non-irrigation season
- Basin requires more water than what is currently available to stabilize
- Focus on areas of greatest need
- Maximize delivery of available water

Supply Options Study Workshop 12.15.16.pptx

Comments received in July and changes made on Supply Options Scenarios

1. Consider supplying NWP water to Creston (not just SWP)

- 2. Identify ways to maximize use of each water type to maximize water into basin
 - Direct deliveries to reduce pumping
 - Off season recharge to use wet season availability
 - Spread water into different subareas focus on areas of greatest decline

poly Options Study Workshop 12, 15, 16 ppt

Team developed combination projects to "book-end" the options

Scenario	NWP	RW	SWP	Notes	Direct Delivery vs Recharge
А	Estrella (Airport re	liveries in Subarea echarge in asons)	Direct deliveries in Creston Subarea. Recharge in Shandon in off-season.	Combination of Alternatives 4A, 7, and 8.	Maximizes Direct Delivery
В	Estrella & Subarea recharg	liveries in & Creston a (Airport ge in off- sons)	Direct deliveries in San Juan Subarea. Recharge in Creston Subarea in off-season	Combination of Alternatives 4A, 5B1, and 7B.	Maximizes Direct Delivery
С	Huero Cre	near Huer ek (Estrella area)	Recharge near Huer Huero Creek (Creston Subarea)	Combination of 5A1 and 5B1	Maximizes Recharge
D	Recharge near airport (Estrella Subarea)		Direct deliveries in San Juan Subarea. Recharge in Creston Subarea in off-season	Combination of Alternatives 4, 5B1, 7A, and 7B	Combination of Recharge and Direct Delivery

STATE WATER PROJECT (SWP)

SWP water – Type and availability

CA Aqueduct

Coastal Branch

Average deliverable SWP to Paso Basin = 8,860 AFY

SWP – Average year expected timing

	Long-Term Average (AFY)	Average Dry Year (AFY)
2020	9,470	4,280
2030	8,860	3,970
2040	8,860	3,970

Supply Options Study Workshop 12.15.16.ppt

SWP water – Contractual issues

- Procurement Methods
 - Negotiate with current subcontractor to receive surplus water when available – less reliable, but likely a lower unit cost
 - Negotiate directly with District or Central Coast Water Agency (CCWA) and become a subcontractor – more reliable, likely higher unit costs

Supply Options Study Workshop 12.15.16.ppt

SWP water – Contractual issues

Procurement Methods

- Negotiate with current subcontractor to receive surplus water when available – less reliable, but likely a lower unit cost
- Negotiate directly with District or Central Coast Water Agency (CCWA) and become a subcontractor – more reliable, likely higher unit costs

SWP water – Reliability

- Variable Table A allocation, but long term reliability of approximately 60%
- SWP provides diversity in supply portfolio

Supply Options Study Workshop 12.15.16.ppty

SWP water – Cost

Turnout Location ⁽¹⁾	Water Quality	Estimated Unit Cost (\$/AF)
RW1 – Phase 1 Turnout	Raw	\$467
RW3 – PPWTP	Raw	\$1,793
TW1 – PPWTP	Treated	\$2,292
TW2 – Reach 2 Turnout (Shandon)	Treated	\$2,503

- Costs were developed based on analysis of historical costs and anticipated future costs for existing subcontractors
- These costs are intended to be a starting points for negotiations
- Raw water is less expensive than treated water
- Infrastructure cost to pipe raw water from before PPWTP is ~\$700/AF
- Study uses \$2,500/AF as a conservative estimate

SWP water – Potential infrastructure

- Scenario A Direct
 Delivery to Creston, Off Season Recharge in
 Shandon
- Scenario B Direct
 Delivery in Creston and
 San Juan, Off-Season
 Recharge in Creston
- Scenario C Recharge in Creston, Direct Deliveries only along the route
- Scenario D Same as B.

SWP – Coastal Branch Pipeline

Scenario A – Direct delivery to Creston, off-season recharge in Shandon

Creston Subarea

Shandon Subarea

ltem	Amount of Water Delivered (AFY)	Length of Pipe (LF)
Creston Direct Deliveries	4,377	87,200
Shandon GW Basin	4,481	9,300
Total	8,858	96,500

Scenario B – Direct delivery to Creston and San Juan, off-season recharge in Creston

Coastal Branch Pipeline
Agricultural Irrigation Areas

Potential Infrastructure
Shandon Turnout (New)
San Juan Irrigation Pipeline

Creston Subarea

San Juan Subarea

ltem	Amount of Water Delivered (AFY)	Length of Pipe (LF)
Creston Direct Deliveries	1,000	3,600
Creston GW Basin	3,949	22,300
San Juan Direct Deliveries	3,909	45,100
Total	8,858	91,000

Scenario C – Recharge in Creston, direct deliveries along route

Creston Subarea

ltem	Amount of Water Delivered (AFY)	Length of Pipe (LF)
Creston Direct Deliveries	765	-
Creston GW Basin	8,093	22,300
Total	8,858	22,300

NACIMIENTO WATER PROJECT (NWP)

NWP water – Availability

- Fully Allocated
- Long-term
 average of
 ~7,100 AFY
 surplus water
 available

NWP – Average year expected timing

	Normal Year (AFY)	Dry Year (AFY)		
2020	10,135	5,577		
2030	8,473	4,045		
2040	7,269	2,852		
Average Supply	8,626	4,158		
Long-Term Average	7,100			

NWP water – Contractual issues

Fully Allocated – Main option for receiving water is negotiating with a current participant

Potential to become participant if another participant gives up allocation

NWP water – Reliability

Since only realistic procurement is through subcontracts with participants, availability is subject to the usage of the participants

Historically very reliable supply

Supply Options Study Workshop 12.15.16.ppt

NWP water – Cost

Location	For Participants	For Non-Participants
City of Paso Robles	\$216 /AF	\$1,299/AF
Templeton CSD	\$234 /AF	\$1,967/AF
Atascadero MWC	\$235 /AF	\$1,554/AF

- These costs are starting points for negotiations
- No surplus water sales have occurred since full allocation in April 2016
- Study uses \$2,000 / AF as a conservative estimate

RECYCLED WATER (RW)

Recycled water – Availability and timing

	Estimated Production (AFY)	Estimated Paso Robles Reuse (AFY)	Extra for Supply (AFY)
2020	3,360	430	2,930
2030	4,410	430	3,980
2040	5,500	430	5,070
Average	4,960	430	4,000

Recycled water - Contractual issues

Requires negotiations with City of Paso Robles

Currently, Paso Robles does not intend to blend with NWP water for in-City reuse

Need to have discussions about blending with NWP or the need to build a separate parallel pipeline

Recycled water - Reliability

Amount of recycled water available will decrease if Paso Robles decides to use more for municipal reuse

Recycled water usually consider drought-proof supply

However conservation can decrease volume

Recycled water – Cost

Potential costs include some combination of Capital and O&M costs for City treatment and distribution

Capital cost sharing could potentially bring the cost of RW up to \$2,000/AF

Study uses \$2,000/AF as a conservative estimate as discussed with the City of Paso Robles

RW/NWP water – Potential infrastructure

- RW and NWP infrastructure combined to minimize infrastructure
- Scenario A Direct delivery to Estrella, off-season recharge in Estrella
- Scenario B Direct
 Delivery in Estrella and
 Creston, off-season
 recharge in Estrella
- Scenario C Recharge in Estrella (no direct delivery available along route)
- Scenario D Direct deliveries and groundwater recharge in Estrella.

Scenario A – Direct delivery and off-season recharge in Estrella

ltem	Amt Water (AFY)
NWP Direct Deliveries	2,050
RW Direct Deliveries	2,050
NWP Recharge	5,050
RW Recharge	1,950
Total	11,100

ltem	Pipe Length (LF)
Backbone Pipeline	55,600
Ag delivery pipeline	45,300
Total	100,900

Scenario B – Direct delivery in Creston and Estrella; Off-season recharge in Estrella

Estrella Subarea

ltem	Amount of Water Delivered (AFY)	Length of Pipe (LF)	
RW/NWP Direct to Estrella	4,100	100,900	
RW/NWP Recharge in Estrella	5,500		
NWP to Creston (Direct)	1,500	55,600	
Total	11,100	156,500	

Scenario C – Recharge in Estrella

Paso Robles WWTP
(Existing)

Nacimiento Pipeline
(Existing)

Potential Infrastructure
Recycled Water Pipeline
Recharge Pipeline
Recharge Basin

Estrella Subarea

ltem	Amount of Water Delivered (AFY)	Length of Pipe (LF)
RW/NWP Recharge in Estrella	11,100	18,400
Total	11,100	18,400

Scenario D – Recharge and direct delivery

in Estrella

Estrella Subarea

ltem	Amount of Water Delivered (AFY)	Length of Pipe (LF)
RW/NWP Recharge in Estrella	10,320	37,900
RW/NWP Direct in Estrella	780	8,300
Total	11,100	46,200

COMBINED SUPPLY OPTION SCENARIOS

Supply Options Study Workshop 12.15.16.pptx

Overview

Scenario	NWP	RW	SWP Notes		Direct Delivery vs Recharge
A	Estrella Subarea Creston Subarea		Direct deliveries in Creston Subarea. Recharge in Shandon in off-season	Combination of Alternatives 4A, 7, and 8	
В	Direct deliveries in Estrella & Creston Subarea (Airport recharge in off- seasons)		Direct deliveries in San Juan Subarea. Recharge in Creston Subarea in off-season	Combination of Alternatives 4, 5B1, and 7B	Maximizes Direct Delivery
С	Recharge near Huer Huero Creek (Estrella Subarea)		Recharge near Huer Huero Creek (Creston Subarea)	Combination of Alternative 5A1 and 5B1	Maximizes Recharge
D	Recharge near airport (Estrella Subarea)		Direct deliveries in San Juan Subarea. Recharge in Creston Subarea in off-season	Combination of Alternatives 4A, 5B1, 7A, and 7B	Combination of Recharge and Direct Delivery

Scenario costs (total supply – 19,960 AFY)

Scenario	Benefit	Total Project Cost	Annualized Project Cost ⁽¹⁾	O&M Cost ⁽²⁾	Water Purchase Cost	Total Annual Cost	Unit Cost (\$/AFY of Benefit)
Scenario A - Maximize Direct Delivery	15,133	\$145.1M					\$3,687
Scenario B - Maximize Direct Delivery (San Juan)	17,413	\$146.3M					\$3,183
Scenario C - Maximize Recharge	13,563	\$53.2M					\$3,628
Scenario D - Combination of Direct Delivery and Recharge	17,045	\$99.9M					\$3,071

- 1) Assumes a 30-year term and 5% interest rate (typical for bond financing). Should the project be funded with a State Revolving Fund (SRF) loan, this annualized cost will be lower.
- 2) These O&M costs include only costs pertaining to pumping, pipeline, and recharge basin maintenance.

Comparison with other new supplies

Component	Estimated Supply (AFY)	Predicted Benefit (AFY) ⁽¹⁾	Supply Unit Cost (\$/AF)	Benefit Unit Cost (\$/AF)
Pismo Beach - GW Recharge (3)	930	698	\$1,900	\$2,700
Pismo Beach - GW injection(3)	930	698	\$2,100	\$2,800
Santa Barbara - RW ⁽⁴⁾	2,900 to 7,600	N/A	\$300 to \$2,200	N/A
Santa Barbara - Desalination ⁽²⁾	3,125	3,125	\$2,300	\$2,300
Pure Water Monterey (5)	3,500	N/A	\$2,500	N/A
Santa Barbara - SW Capture ⁽⁴⁾	2,100 to 56,000	N/A	\$12 to \$2,800	N/A
Monterey Peninsula Water Supply Project ⁽⁶⁾	10,600	10,600	\$3,800	\$3,800
Pismo Beach - RW Irrigation ⁽³⁾	17	17	\$15,900	\$15,900

Notes:

- (1) Most comparison projects did not provide a predicted benefit.
- (2) Santa Barbara Desalination Project Bid Documents (March 2015).
- (3) Information and costs from the Pismo Beach Final Draft 2015 Urban Water Management Plan (June 2016)
- (4) Information and costs from the December 2015 Long Term Supplemental Water Supply Alternatives Report prepared for the County of Santa Barbara, CA.
- (5) Yield from the Pure Water Monterey Groundwater Recharge Joint Public Hearing (August 2016). Costs from Amended CalAm MPWSP Application (March 2016).
- (6) Information and costs from the Amended Application of the California-American Water Company for the Approval of the Monterey Peninsula Water Supply Project (March 2016)

upply Options Study Workshop 12.15.16.ppt

Key Findings

 Most cost effective alternative is combination of direct delivery and groundwater recharge (Scenario B and D)

- SWP delivery to Creston Subarea highly effective (with direct delivery along the way)
- Water purchase comprises majority of annual cost of each scenario
- Capital cost difference between recharge option and full direct delivery is approximately \$100M
- GSA can mix and match individual scenario components to phase implementation or create new scenarios.

NEXT STEPS

upply Options Study Workshop 12.15.16.pp

Next Steps

- Basin management entity(s)/ groundwater sustainability agency(s) review
- Develop funding
- Water procurement discussions
- Supplemental studies pipeline alignments, geotechnical studies, Environmental Impact Report
- Preliminary design
- Land acquisition/right-of-way discussions
- Permitting
- Final design
- Construction and operation

upply Options Study Workshop 12.15.16.pptx

Applicability to SGMA – Questions to answer

- What is the definition of sustainability over time?
- Do the existing, completed studies (including this one) provide enough information to proceed with developing a plan and fulfill regulatory requirements?
- What methods should be used to meet groundwater sustainability?
- If supplemental water supplies are included in the GSP, what is the preferred method of delivery into the Basin?
- How to fairly distribute the costs and benefits of implementing the GSP?

Next steps for supply options

